首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal locomotory morphology, i.e. morphological features involved in locomotion, is under the influence of a diverse set of ecological and behavioral factors. In teleost fish, habitat choice and foraging strategy are major determinants of locomotory morphology. In this study, we assess the influence of habitat use and foraging strategy on important locomotory traits, namely the size of the pectoral and caudal fins and the weight of the pectoral fin muscles, as applied to one of the most astonishing cases of adaptive radiation: the species flock of cichlid fishes in East African Lake Tanganyika. We also examine the course of niche partitioning along two main habitat axes, the benthic vs. limnetic and the sandy vs. rocky substrate axis. The results are then compared with available data on the cichlid adaptive radiation of neighbouring Lake Malawi. We find that pectoral fin size and muscle weight correlate with habitat use within the water column, as well as with substrate composition and foraging strategies. Niche partitioning along the benthic–limnetic axis in Lake Tanganyikan cichlids seems to follow a similar course as in Lake Malawi, while the course of habitat use with respect to substrate composition appears to differ between the cichlid assemblages of these two lakes.  相似文献   

2.
Divergence along a benthic to limnetic habitat axis is ubiquitous in aquatic systems. However, this type of habitat divergence has largely been examined in low diversity, high latitude lake systems. In this study, we examined the importance of benthic and limnetic divergence within the incredibly species‐rich radiation of Lake Malawi cichlid fishes. Using novel phylogenetic reconstructions, we provided a series of hypotheses regarding the evolutionary relationships among 24 benthic and limnetic species that suggests divergence along this axis has occurred multiple times within Lake Malawi cichlids. Because pectoral fin morphology is often associated with divergence along this habitat axis in other fish groups, we investigated divergence in pectoral fin muscles in these benthic and limnetic cichlid species. We showed that the eight pectoral fin muscles and fin area generally tended to evolve in a tightly correlated manner in the Lake Malawi cichlids. Additionally, we found that larger pectoral fin muscles are strongly associated with the independent evolution of the benthic feeding habit across this group of fish. Evolutionary specialization along a benthic/limnetic axis has occurred multiple times within this tropical lake radiation and has produced repeated convergent matching between exploitation of water column habitats and locomotory morphology.  相似文献   

3.
Major environmental events that fragment populations among multiple island habitats have potential to drive large-scale episodes of speciation and adaptive radiation. A recent palaeolimnological study of sediment cores indicated that Lake Malawi underwent major climate-driven desiccation events 75 000–135 000 years ago that lowered the water level to at least 580 m below the present state and severely reduced surface area. After this period, lake levels rose and stabilized, creating multiple discontinuous littoral rocky habitats. Here, we present evidence supporting the hypothesis that establishment and expansion of isolated philopatric rock cichlid populations occurred after this rise and stabilization of lake level. We studied the Pseudotropheus ( Maylandia ) species complex, a group with both allopatric and sympatric populations that differ in male nuptial colour traits and tend to mate assortatively. Using coalescent analyses based on mitochondrial DNA, we found evidence that populations throughout the lake started to expand and accumulate genetic diversity after the lake level rise. Moreover, most haplotypes were geographically restricted, and the greatest genetic similarities were typically among sympatric or neighbouring populations. This is indicative of limited dispersal and establishment of assortative mating among populations following the lake level rise. Together, this evidence is compatible with a single large-scale environmental event being central to evolution of spatial patterns of genetic and species diversity in P. ( Maylandia ) and perhaps other Lake Malawi rock cichlids. Equivalent climate-driven pulses of habitat formation and fragmentation may similarly have contributed to observed rapid and punctuated cladogenesis in other adaptive radiations.  相似文献   

4.
The East African cichlid radiations are characterized by repeated and rapid diversification into many distinct species with different ecological specializations and by a history of hybridization events between nonsister species. Such hybridization might provide important fuel for adaptive radiation. Interspecific hybrids can have extreme trait values or novel trait combinations and such transgressive phenotypes may allow some hybrids to explore ecological niches neither of the parental species could tap into. Here, we investigate the potential of second‐generation (F2) hybrids between two generalist cichlid species from Lake Malawi to exploit a resource neither parental species is specialized on: feeding by sifting sand. Some of the F2 hybrids phenotypically resembled fish of species that are specialized on sand sifting. We combined experimental behavioral and morphometric approaches to test whether the F2 hybrids are transgressive in both morphology and behavior related to sand sifting. We then performed a quantitative trait loci (QTL) analysis using RADseq markers to investigate the genetic architecture of morphological and behavioral traits. We show that transgression is present in several morphological traits, that novel trait combinations occur, and we observe transgressive trait values in sand sifting behavior in some of the F2 hybrids. Moreover, we find QTLs for morphology and for sand sifting behavior, suggesting the existence of some loci with moderate to large effects. We demonstrate that hybridization has the potential to rapidly generate novel and ecologically relevant phenotypes that may be suited to a niche neither of the parental species occupies. Interspecific hybridization may thereby contribute to the rapid generation of ecological diversity in cichlid radiations.  相似文献   

5.
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype‐environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large‐scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.  相似文献   

6.

Background

Understanding the causes of disparities in species diversity across taxonomic groups and regions is a fundamental aim in evolutionary biology. Addressing these questions is difficult because of the need for densely sampled phylogenies and suitable empirical systems.

Methodology/Principal Findings

Here we investigate the cichlid fish radiation of Lake Tanganyika and show that per lineage diversification rates have been more than six times slower than in the species flocks of Lakes Victoria and Malawi. The result holds even at peak periods of diversification in Lake Tanganyika, ruling out the age of the lake as an explanation for slow average rates, and is robust to uncertainties over the calibration of cichlid radiations in geological time. Moreover, Lake Tanganyika lineages, irrespective of different biological characteristics (e.g. sexually dichromatic versus sexually monochromatic clades), have diversified at similar rates, falling within typical estimates across a range of plant and animal clades. For example, the mostly sexually dichromatic haplochromines, which have speciated explosively in Lakes Victoria and Malawi, have displayed modest rates in Lake Tanganyika (where they are called Tropheini).

Conclusion/Significance

Our results show that either the Lake Tanganyika environment is less conducive for cichlid speciation or the remarkable diversifying abilities of the haplochromines were inhibited by the prior occupancy of older radiations. Although the results indicate a dominant role for the environment in shaping cichlid diversification, differences in the timing of diversification among the Tanganyikan tribes indicate that biological differences were still important for the dynamics of species build-up in the lake. While we cannot resolve the timing of the radiation relative to the origin of the lake, because of the lack of robust geological date calibrations for cichlids, our results are consistent with a scenario that the different clades reflect independent adaptive radiations into different broad niches in the lake.  相似文献   

7.
The process of adaptive radiation involves multiple events of speciation in short succession, associated with ecological diversification. Understanding this process requires identifying the origins of heritable phenotypic variation that allows adaptive radiation to progress. Hybridization is one source of genetic and morphological variation that may spur adaptive radiation. We experimentally explored the potential role of hybridization in facilitating the onset of adaptive radiation. We generated first‐ and second‐generation hybrids of four species of African cichlid fish, extant relatives of the putative ancestors of the adaptive radiations of Lakes Victoria and Malawi. We compared patterns in hybrid morphological variation with the variation in the lake radiations. We show that significant fractions of the interspecific morphological variation and the major trajectories in morphospace that characterize whole radiations can be generated in second‐generation hybrids. Furthermore, we show that covariation between traits is relaxed in second‐generation hybrids, which may facilitate adaptive diversification. These results support the idea that hybridization can provide the heritable phenotypic diversity necessary to initiate adaptive radiation.  相似文献   

8.
The Lake Malawi haplochromine cichlid flock is one of the largest vertebrate adaptive radiations. The geographical source of the radiation has been assumed to be rivers to the south and east of Lake Malawi, where extant representatives of the flock are now present. Here, we provide mitochondrial DNA evidence suggesting the sister taxon to the Lake Malawi radiation is within the Great Ruaha river in Tanzania, north of Lake Malawi. Estimates of the time of divergence between the Lake Malawi flock and this riverine sister taxon range from 2.13 to 6.76 Ma, prior to origins of the current radiation 1.20–4.06 Ma. These results are congruent with evaluations of 2–3.75 Ma fossil material that suggest past faunal connections between Lake Malawi and the Ruaha. We propose that ancestors of the Malawi radiation became isolated within the catchment during Pliocene rifting that formed both Lake Malawi and the Kipengere/Livingstone mountain range, before colonizing rivers to the south and east of the lake region and radiating within the lake basin. Identification of this sister taxon allows tests of whether standing genetic diversity has predisposed Lake Malawi cichlids to rapid speciation and adaptive radiation.  相似文献   

9.
African cichlid fish: a model system in adaptive radiation research   总被引:9,自引:0,他引:9  
The African cichlid fish radiations are the most diverse extant animal radiations and provide a unique system to test predictions of speciation and adaptive radiation theory. The past few years have seen major advances in the phylogenetics, evolutionary biogeography and ecology of cichlid fish. Most of this work has concentrated on the most diverse radiations. Unfortunately, a large number of small radiations and 'non-radiations' have been overlooked, potentially limiting the contribution of the cichlid system to our understanding of speciation and adaptive radiation. I have reviewed the literature to identify 33 intralacustrine radiations and 76 failed radiations. For as many as possible I collected information on lake size, age and phylogenetic relationships. I use these data to address two questions: (i) whether the rate of speciation and the resulting species richness are related to temporal and spatial variation in ecological opportunity and (ii) whether the likelihood of undergoing adaptive radiation is similar for different African cichlid lineages. The former is a key prediction of the ecological theory of adaptive radiation that has been presumed true but remains untested for cichlid radiations. The second is based on the hypothesis that the propensity of cichlids to radiate is due to a key evolutionary innovation shared by all African cichlids. The evidence suggests that speciation rate declines through time as niches get filled up during adaptive radiation: young radiations and early stages of old radiations are characterized by high rates of speciation, whereas at least 0.5 Myr into a radiation speciation becomes a lot less frequent. The number of species in cichlid radiations increases with lake size, supporting the prediction that species diversity increases with habitat heterogeneity, but also with opportunity for isolation by distance. Finally, the data suggest that the propensity to radiate within lakes is a derived property that evolved during the evolutionary history of some African cichlids, and the appearance of which does not coincide with the appearance of proposed key innovations in morphology and life history.  相似文献   

10.
The adaptive radiations of East African cichlid fish in the Great Lakes Victoria, Malawi, and Tanganyika are well known for their diversity and repeatedly evolved phenotypes. Convergent evolution of melanic horizontal stripes has been linked to a single locus harboring the gene agouti-related peptide 2 (agrp2). However, where and when the causal variants underlying this trait evolved and how they drove phenotypic divergence remained unknown. To test the alternative hypotheses of standing genetic variation versus de novo mutations (independently originating in each radiation), we searched for shared signals of genomic divergence at the agrp2 locus. Although we discovered similar signatures of differentiation at the locus level, the haplotypes associated with stripe patterns are surprisingly different. In Lake Malawi, the highest associated alleles are located within and close to the 5′ untranslated region of agrp2 and likely evolved through recent de novo mutations. In the younger Lake Victoria radiation, stripes are associated with two intronic regions overlapping with a previously reported cis-regulatory interval. The origin of these segregating haplotypes predates the Lake Victoria radiation because they are also found in more basal riverine and Lake Kivu species. This suggests that both segregating haplotypes were present as standing genetic variation at the onset of the Lake Victoria adaptive radiation with its more than 500 species and drove phenotypic divergence within the species flock. Therefore, both new (Lake Malawi) and ancient (Lake Victoria) allelic variation at the same locus fueled rapid and convergent phenotypic evolution.  相似文献   

11.
During the early stages of adaptive radiation, populations diverge in life history traits such as egg size and growth rates, in addition to eco‐morphological and behavioral characteristics. However, there are few studies of life history divergence within ongoing adaptive radiations. Here, we studied Astatotilapia calliptera, a maternal mouthbrooding cichlid fish within the Lake Malawi haplochromine radiation. This species occupies a rich diversity of habitats, including the main body of Lake Malawi, as well as peripheral rivers and shallow lakes. We used common garden experiments to test for life history divergence among populations, focussing on clutch size, duration of incubation, egg mass, offspring size, and growth rates. In a first experiment, we found significant differences among populations in average clutch size and egg mass, and larger clutches were associated with smaller eggs. In a second experiment, we found significant differences among populations in brood size, duration of incubation, juvenile length when released, and growth rates. Larger broods were associated with smaller juveniles when released and shorter incubation times. Although juvenile growth rates differed between populations, these were not strongly related to initial size on release. Overall, differences in life history characters among populations were not predicted by major habitat classifications (Lake Malawi or peripheral habitats) or population genetic divergence (microsatellite‐based FST). We suggest that the observed patterns are consistent with local selective forces driving the observed patterns of trait divergence. The results provide strong evidence of evolutionary divergence and covariance of life history traits among populations within a radiating cichlid species, highlighting opportunities for further work to identify the processes driving the observed divergence.  相似文献   

12.
Phylogenetic analyses based on mitochondrial (mt) DNA have indicated that the cichlid species flock of the Lake Victoria region is derived from a single ancestral species found in East African rivers, closely related to the ancestor of the Lake Malawi cichlid species flock. The Lake Victoria flock contains ten times less mtDNA variation than the Lake Malawi radiation, consistent with current estimates of the ages of the lakes. We present results of a phylogenetic investigation using nuclear (amplified fragment length polymorphism) markers and a wider coverage of riverine haplochromines. We demonstrate that the Lake Victoria-Edward flock is derived from the morphologically and ecologically diverse cichlid genus Thoracochromis from the Congo and Nile, rather than from the phenotypically conservative East African Astatotilapia. This implies that the ability to express much of the morphological diversity found in the species flock may by far pre-date the origin of the flock. Our data indicate that the nuclear diversity of the Lake Victoria-Edward species flock is similar to that of the Lake Malawi flock, indicating that the genetic diversity is considerably older than the 15 000 years that have passed since the lake began to refill. Most of this variation is manifested in trans-species polymorphisms, indicating very recent cladogenesis from a genetically very diverse founder stock. Our data do not confirm strict monophyly of either of the species flocks, but raise the possibility that these flocks have arisen from hybrid swarms.  相似文献   

13.
Phenotypic plasticity allows organisms to adapt quickly to local environmental conditions and could facilitate adaptive radiations. Cichlids have recently undergone an adaptive radiation in Lake Malawi where they inhabit diverse light environments and tune their visual sensitivity through differences in cone opsin expression. While cichlid opsin expression is known to be plastic over development, whether adults remain plastic is unknown. Adult plasticity in visual tuning could play a role in cichlid radiations by enabling survival in changing environments and facilitating invasion into novel environments. Here we examine the existence of and temporal changes in adult visual plasticity of two closely related species. In complementary experiments, wild adult Metriaclima mbenji from Lake Malawi were moved to the lab under UV‐deficient fluorescent lighting; while lab raised M. benetos were placed under UV‐rich lighting designed to mimic light conditions in the wild. Surprisingly, adult cichlids in both experiments showed significant changes in the expression of the UV‐sensitive single cone opsin, SWS1, in only 3 days. Modeling quantum catches in the light environments revealed a possible link between the light available to the SWS1 visual pigment and SWS1 expression. We conclude that adult cichlids can undergo rapid and significant changes in opsin expression in response to environmental light shifts that are relevant to their habitat and evolutionary history in Lake Malawi. This could have contributed to the rapid divergence characteristic of these fantastic fishes.  相似文献   

14.
The lower jaw (LJ) provides an ideal trophic phenotype to compare rates and patterns of macroevolution among cichlid radiations. Using a novel phylogeny of four genes (ND2, dlx2, mitfb, and s7), we examined the evolutionary relationships among two of the most phylogenetically disparate cichlid radiations: (i) the Central America Heroines; and (ii) the East African Lake Malawi flock. To quantify jaw morphology, we measured two LJ lever systems in approximately 40 species from each lineage. Using geologic calibrations, we generated a chronogram for both groups and examined the rates of jaw evolution in the two radiations. The most rapidly evolving components of the LJ differed between the two radiations. However, the Lake Malawi flock exhibited a much faster rate of evolution in several components of the LJ. This rapid rate of divergence is consistent with natural selection, promoting unparalleled trophic diversification in Lake Malawi cichlids.  相似文献   

15.
The megadiverse haplochromine cichlid radiations of the East African lakes, famous examples of explosive speciation and adaptive radiation, are according to recent studies, introgressed by different riverine lineages. This study is based on the first comprehensive mitochondrial and nuclear DNA dataset from extensive sampling of riverine haplochromine cichlids. It includes species from the lower River Congo and Angolan (River Kwanza) drainages. Reconstruction of phylogenetic hypotheses revealed the paradox of clearly discordant phylogenetic signals. Closely related mtDNA haplotypes are distributed thousands of kilometres apart and across major African watersheds, whereas some neighbouring species carry drastically divergent mtDNA haplotypes. At shallow and deep phylogenetic layers, strong signals of hybridization are attributed to the complex Late Miocene/Early Pliocene palaeohistory of African rivers. Hybridization of multiple lineages across changing watersheds shaped each of the major haplochromine radiations in lakes Tanganyika, Victoria, Malawi and the Kalahari Palaeolakes, as well as a miniature species flock in the Congo basin (River Fwa). On the basis of our results, introgression occurred not only on a spatially restricted scale, but massively over almost the whole range of the haplochromine distribution. This provides an alternative view on the origin and exceptional high diversity of this enigmatic vertebrate group.  相似文献   

16.
Food resource specialization within novel environments is considered a common axis of diversification in adaptive radiations. Feeding specializations are often coupled with striking morphological adaptations and exemplify the relation between morphology and diet (phenotype–environment correlations), as seen in, for example, Darwin finches, Hawaiian spiders, and the cichlid fish radiations in East African lakes. The cichlids' potential to rapidly exploit and occupy a variety of different habitats has previously been attributed to the variability and adaptability of their trophic structures including the pharyngeal jaw apparatus. Here we report a reciprocal transplant experiment designed to explore the adaptability of the trophic structures in highly specialized cichlid fish species. More specifically, we forced two common but ecologically distinct cichlid species from Lake Tanganyika, Tropheus moorii (rock‐dweller), and Xenotilapia boulengeri (sand‐dweller), to live on their preferred as well as on an unpreferred habitat (sand and rock, respectively). We measured their overall performance on the different habitat types and explored whether adaptive phenotypic plasticity is involved in adaptation. We found that, while habitat had no effect on the performance of X. boulengeri, T. moorii performed significantly better in its preferred habitat. Despite an experimental duration of several months, we did not find a shift in the morphology of the lower pharyngeal jaw bone that would be indicative of adaptive phenotypic plasticity in this trait.  相似文献   

17.
Genetic variation in many invasive species shows little or no signs of a founder event, suggesting that high genetic diversity may facilitate establishment success. The rocky‐shore, plankton‐feeding cichlid fish Cynotilapia afra is endemic to Lake Malawi, but naturally absent from many suitable sites. In the 1960s, this species was introduced to the southern areas of the lake, presumably as a result of the aquarium fish trade. It has now become established on a number of rocky areas within the Lake Malawi National Park. Here, we analysed DNA sequence variation in the mitochondrial control region of six native and four introduced populations of C. afra, and three populations of the closely‐related and hybridizing Pseudotropheus zebra. In contrast to previous studies of Lake Malawi rock dwelling cichlids, network analyses suggested that native populations of C. afra showed high levels of lineage sorting in mtDNA. Introduced populations showed higher sequence and haplotype diversity than their native counterparts. Our analyses suggested that the elevated gene diversity was largely attributed to the fact that the introduced C. afra populations were derived from several genetically distinct and geographically separate populations, and to a lesser extent because of introgressive hybridization with native P. zebra. The establishment and spread of C. afra may be partly because of its ability to occupy a vacant ecological niche, but it may also have been facilitated by its enhanced genetic diversity.  相似文献   

18.
The 500-1000 cichlid species endemic to Lake Malawi constitute one of the most rapid and extensive radiations of vertebrates known. There is a growing debate over the role natural and sexual selection have played in creating this remarkable assemblage of species. Phylogenetic analysis of the Lake Malawi species flock has been confounded by the lack of appropriate morphological characters and an exceptional rate of speciation, which has allowed ancestral molecular polymorphisms to persist within species. To overcome this problem we used amplified fragment length polymorphism (AFLP) to reconstruct the evolution of species within three genera of Lake Malawi sand-dwelling cichlids that construct elaborate male display platforms, or bowers. Sister taxa with distinct bower morphologies, and that exist in discrete leks separated by only 1-2 m of depth, are divergent in both sexually selected and ecological traits. Our phylogeny suggests that the forces of sexual and ecological selection are intertwined during the speciation of this group and that specific bower characteristics and trophic morphologies have evolved repeatedly. These results suggest that trophic morphology and bower form may be inappropriate characters for delineating taxonomic lineages. Specifically the morphological characters used to describe the genera Lethrinops and Tramitichromis do not define monophyletic clades. Using a combination of behavioural and genetic characters, we were able to identify several cryptic cichlid species on a single beach, which suggests that sand dweller species richness has been severely underestimated.  相似文献   

19.
When a population size is reduced, genetic drift may fix slightly deleterious mutations, and an increase in nonsynonymous substitution is expected. It has been suggested that past aridity has seriously affected and decreased the populations of cichlid fishes in Lake Victoria, while geographical studies have shown that the water levels in Lake Tanganyika and Lake Malawi have remained fairly constant. The comparably stable environments in the latter two lakes might have kept the populations of cichlid fishes large enough to remove slightly deleterious mutations. The difference in the stability of cichlid fish population sizes between Lake Victoria and the Lakes Tanganyika and Malawi is expected to have caused differences in the nonsynonymous/synonymous ratio, ω (= dN/dS), of the evolutionary rate. Here, we estimated ω and compared it between the cichlids of the three lakes for 13 mitochondrial protein-coding genes using maximum likelihood methods. We found that the lineages of the cichlids in Lake Victoria had a significantly higher ω for several mitochondrial loci. Moreover, positive selection was indicated for several codons in the mtDNA of the Lake Victoria cichlid lineage. Our results indicate that both adaptive and slightly deleterious molecular evolution has taken place in the Lake Victoria cichlids' mtDNA genes, whose nonsynonymous sites are generally conserved.  相似文献   

20.
Decoupling of the upper jaw bones—jaw kinesis—is a distinctive feature of the ray-finned fishes, but it is not clear how the innovation is related to the extraordinary diversity of feeding behaviours and feeding ecology in this group. We address this issue in a lineage of ray-finned fishes that is well known for its ecological and functional diversity—African rift lake cichlids. We sequenced ultraconserved elements to generate a phylogenomic tree of the Lake Tanganyika and Lake Malawi cichlid radiations. We filmed a diverse array of over 50 cichlid species capturing live prey and quantified the extent of jaw kinesis in the premaxillary and maxillary bones. Our combination of phylogenomic and kinematic data reveals a strong association between biting modes of feeding and reduced jaw kinesis, suggesting that the contrasting demands of biting and suction feeding have strongly influenced cranial evolution in both cichlid radiations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号