首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saffold virus (SAFV) was identified as a human cardiovirus in 2007. Although several epidemiological studies have been reported, they have failed to provide a clear picture of the relationship between SAFV and human diseases. SAFV genotype 3 has been isolated from the cerebrospinal fluid specimen of patient with aseptic meningitis. This finding is of interest since Theiler’s murine encephalomyelitis virus (TMEV), which is the closely related virus, is known to cause a multiple sclerosis-like syndrome in mice. TMEV persistently infects in mouse macrophage cells in vivo and in vitro, and the viral persistence is essential in TMEV-induced demyelinating disease. The precise mechanism(s) of SAFV infection still remain unclear. In order to clarify the SAFV pathogenicity, in the present study, we studied the possibilities of the in vitro persistent infection of SAFV. The two distinct phenotypes of HeLa cells, HeLa-N and HeLa-R, were identified. In these cells, the type of SAFV-3 infection was clearly different. HeLa-N cells were lyticly infected with SAFV-3 and the host suitable for the efficient growth. On the other hand, HeLa-R cells were persistently infected with SAFV-3. In addition, the SAFV persistence in HeLa-R cells is independent of type I IFN response of host cells although the TMEV persistence in mouse macrophage cells depends on the response. Furthermore, it was suggested that SAFV persistence may be influenced by the expression of receptor(s) for SAFV infection on the host cells. The present findings on SAFV persistence will provide the important information to encourage the research of SAFV pathogenicity.  相似文献   

2.
Influenza A virus is a potent pathogen of annual respiratory illness with huge potential of causing occasional pandemics of catastrophic consequences. In April 2009, a novel, swine-origin influenza A H1N1/09 virus was identified in Mexico which continued to spread globally. This unique virus emerged from an avian, human, Eurasian swine viral strain and a North American swine strain belonging to the lineage of the 1930 swine virus. Till date H1N1/09 pandemic has been relatively mild and lacks the previously described molecular markers of influenza A pathogenicity and transmissibility. In this review, we will discuss the molecular and antigenic determinants of this virus and its designation as a low pathogenic strain, which carries the potential to develop into a devastating strain with subsequent mutations and reassortments.  相似文献   

3.
Zhou L  Luo Y  Wu Y  Tsao J  Luo M 《Journal of virology》2000,74(3):1477-1485
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus of the Cardiovirus genus. Certain strains of TMEV may cause a chronic demyelinating disease, which is very similar to multiple sclerosis in humans, associated with a persistent viral infection in the mouse central nervous system (CNS). Other strains of TMEV only cause an acute infection without persistence in the CNS. It has been shown that sialic acid is a receptor moiety only for the persistent TMEV strains and not for the nonpersistent strains. We report the effect of sialylation on cell surface on entry and the complex structure of DA virus, a persistent TMEV, and the receptor moiety mimic, sialyllactose, refined to a resolution of 3.0 A. The ligand binds to a pocket on the viral surface, composed mainly of the amino acid residues from capsid protein VP2 puff B, in the vicinity of the VP1 loop and VP3 C terminus. The interaction of the receptor moiety with the persistent DA strain provides new understanding for the demyelinating persistent infection in the mouse CNS by TMEV.  相似文献   

4.
Theiler’s murine encephalomyelitis virus (TMEV) induces immune-mediated demyelination after intracerebral inoculation of the virus into susceptible mouse strains. We isolated from a TMEV BeAn 8386 viral stock, a low-pathogenic variant which requires greater than a 10,000-fold increase in viral inoculation for the manifestation of detectable clinical signs. Intracerebral inoculation of this variant virus induced a strong, long-lasting, protective immunity from the demyelinating disease caused by pathogenic TMEV. The levels of antibodies to the whole virus as well as to the major linear epitopes were similar in mice infected with either the variant or wild-type virus. However, persistence of the variant virus in the central nervous system (CNS) of mice was significantly lower than that of the pathogenic virus. In addition, the T-cell response to the predominant VP1 (VP1233–250) epitope in mice infected with the variant virus was significantly weaker than that in mice infected with the parent virus, while similar T-cell responses were induced against another predominant epitope (VP274–86). Further analyses indicated that a change of lysine to arginine at position 244 of VP1, which is the only amino acid difference in the P1 region, is responsible for such differential T-cell recognition. Thus, the difference in the T-cell reactivity to this VP1 region as well as the low level of viral persistence in the CNS may account for the low pathogenicity of this spontaneous variant virus.  相似文献   

5.
Discovery of new viruses has been boosted by novel deep sequencing technologies. Currently, many viruses can be identified by sequencing without knowledge of the pathogenicity of the virus. However, attributing the presence of a virus in patient material to a disease in the patient can be a challenge. One approach to meet this challenge is identification of viral sequences based on enrichment by autologous patient antibody capture. This method facilitates identification of viruses that have provoked an immune response within the patient and may increase the sensitivity of the current virus discovery techniques. To demonstrate the utility of this method, virus discovery deep sequencing (VIDISCA-454) was performed on clinical samples from 19 patients: 13 with a known respiratory viral infection and 6 with a known gastrointestinal viral infection. Patient sera was collected from one to several months after the acute infection phase. Input and antibody capture material was sequenced and enrichment was assessed. In 18 of the 19 patients, viral reads from immunogenic viruses were enriched by antibody capture (ranging between 1.5x to 343x in respiratory material, and 1.4x to 53x in stool). Enriched reads were also determined in an identity independent manner by using a novel algorithm Xcompare. In 16 of the 19 patients, 21% to 100% of the enriched reads were derived from infecting viruses. In conclusion, the technique provides a novel approach to specifically identify immunogenic viral sequences among the bulk of sequences which are usually encountered during virus discovery metagenomics.  相似文献   

6.
Saffold viruses (SAFV) are a recently discovered group of human Cardioviruses closely related to Theiler's murine encephalomyelitis viruses (TMEV). Unlike TMEV and encephalomyocarditis virus, each of which is monotypic, SAFV are genetically diverse and include at least eight genotypes. To date, only Saffold virus 3 (SAFV-3) has been grown efficiently in mammalian cells in vitro. Here, we report the successful adaptation of SAFV-2 for efficient growth in HeLa cells after 13 passages in the alpha/beta interferon-deficient human glial cell line U118 MG. Nine amino acid changes were found in the adapted virus, with single mutations in VP2, VP3, and 2B, while 6 mutations arose in VP1. Most capsid mutations were in surface loops. Analysis of SAFV-2 revealed virus growth and cytopathic effect only in human cell lines, with large plaques forming in HeLa cells, with minimal cell association, and without using sialic acid to enter cells. Despite the limited growth of SAFV-2 in rodent cells in vitro, BALB/c mice inoculated with SAFV-2 showed antibody titers of >1:10(6), and fluorescence-activated cell sorting (FACS) analysis revealed only minimal cross-reactivity with SFV-3. Intracerebral inoculation of 6-week-old FVB/n mice produced paralysis and acute neuropathological changes, including meningeal infiltrates, encephalitis, particularly of the limbic system, and spinal cord white matter inflammation.  相似文献   

7.
Theiler's murine encephalomyelitis viruses (TMEV) are picornaviruses that produce enteric and neurological diseases in mice. Subgroup TO strains of TMEV cause persistent infections with demyelination, while subgroup GDVII strains neither persist nor demyelinate. We produced neutralizing monoclonal antibodies (mAbs) to clarify the mechanisms of persistence and demyelination. Some of the neutralizing mAbs reacted with isolated VP1 on Western blots, while others were conformation specific. The neutralization site for the former TMEV mAbs was on the VP1 trypsin cleavage site of the intact virion. The neutralization site for the conformation-specific mAbs was distinct and was not affected by trypsin. Trypsin treatment of subgroup TO strains increased their infectivity for L cells, whereas the infectivity of subgroup GDVII strains was decreased by trypsin treatment. Subpopulations of virus in subgroup TO-infected tissue culture cells and in infected mouse brain homogenates contained VP1-cleaved virus; this VP1-cleaved virus gave rise to a large persistent fraction in neutralization tests when it was reacted with VP1-specific mAbs. These findings have implications regarding the pathogenesis of subgroup TO demyelinating disease. TMEV VP1 cleavage may be important for virus persistence because of disruption of a major neutralization epitope. The change in virus surface structure caused by VP1 cleavage may affect cell binding and lead to altered cytotropism. Immunocytes, which have been implicated in subgroup TO demyelination, may provide a source for proteases for VP1 cleavage.  相似文献   

8.
9.
Strains of Theiler's murine encephalomyelitis virus (TMEV) are divided into two subgroups, TO and GDVII. TMEV strains show subgroup-specific virus growth and cell tropism and induce subgroup-specific diseases. Using site-directed mutagenesis, we demonstrated that the amino acid at position 57 of the leader protein (L(57)), which is located at the most N-terminal part of the polyprotein, regulates subgroup-specific virus growth on BHK-21 cells. Further study suggested that L(57) may regulate viral RNA encapsidation, although it does not affect the synthesis of viral proteins or the assembly of viral intermediates.  相似文献   

10.
The low-neurovirulence Theiler's murine encephalomyelitis viruses (TMEV), such as BeAn virus, cause a persistent infection of the central nervous system (CNS) in susceptible mouse strains that results in inflammatory demyelination. The ability of TMEV to persist in the mouse CNS has traditionally been demonstrated by recovering infectious virus from the spinal cord. Results of infectivity assays led to the notion that TMEV persists at low levels. In the present study, we analyzed the copy number of TMEV genomes, plus- to minus-strand ratios, and full-length species in the spinal cords of infected mice and infected tissue culture cells by using Northern hybridization. Considering the low levels of infectious virus in the spinal cord, a surprisingly large number of viral genomes (mean of 3.0 x 10(9)) was detected in persistently infected mice. In the transition from the acute (approximately postinfection [p.i.] day 7) to the persistent (beginning on p.i. day 28) phase of infection, viral RNA copy numbers steadily increased, indicating that TMEV persistence involves active viral RNA replication. Further, BeAn viral genomes were full-length in size; i.e., no subgenomic species were detected and the ratio of BeAn virus plus- to minus-strand RNA indicated that viral RNA replication is unperturbed in the mouse spinal cord. Analysis of cultured macrophages and oligodendrocytes suggests that either of these cell types can potentially synthesize high numbers of viral RNA copies if infected in the spinal cord and therefore account for the heavy viral load. A scheme is presented for the direct isolation of both cell types directly from infected spinal cords for further viral analyses.  相似文献   

11.
Theiler's murine encephalomyelitis virus (TMEV), a natural pathogen of mice, is a member of the genus Cardiovirus in the family Picornaviridae. Structural studies indicate that the cardiovirus pit, a deep depression on the surface of the virion, is involved in receptor attachment; however, this notion has never been systematically tested. Therefore, we used BeAn virus, a less virulent TMEV, to study the effect of site-specific mutation of selected pit amino acids on viral binding as well as other replicative functions of the virus. Four amino acids within the pit, V1091, P1153, A1225 and P3179, were selected for mutagenesis to evaluate their role in receptor attachment. Three amino acid replacements were made at each site, the first a conservative replacement, followed by progressively more radical amino acid changes in order to detect variable effects at each site. A total of seven viable mutant viruses were recovered and characterized for their binding properties to BHK-21 cells, capsid stability at 40 degrees C, viral RNA replication, single- and multistep growth kinetics, and virus translation. Our data implicate three of these residues in TMEV-cell receptor attachment.  相似文献   

12.
Identification of a new human coronavirus   总被引:29,自引:0,他引:29  
Three human coronaviruses are known to exist: human coronavirus 229E (HCoV-229E), HCoV-OC43 and severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV). Here we report the identification of a fourth human coronavirus, HCoV-NL63, using a new method of virus discovery. The virus was isolated from a 7-month-old child suffering from bronchiolitis and conjunctivitis. The complete genome sequence indicates that this virus is not a recombinant, but rather a new group 1 coronavirus. The in vitro host cell range of HCoV-NL63 is notable because it replicates on tertiary monkey kidney cells and the monkey kidney LLC-MK2 cell line. The viral genome contains distinctive features, including a unique N-terminal fragment within the spike protein. Screening of clinical specimens from individuals suffering from respiratory illness identified seven additional HCoV-NL63-infected individuals, indicating that the virus was widely spread within the human population.  相似文献   

13.
During an outbreak of influenza specimens were obtained from 21 patients with influenza-like illnesses and from 29 healthy subjects in close contact with the patients. Throat washings from 12 of the patients were positive for influenza virus but virus was not detected from the blood specimens. One healthy contact became ill 12 hours after the specimens were obtained, and the virus was isolated from his blood and throat washings. The remaining contacts showed no clinical illness; but the virus was isolated from the throat washings of four of them, with no viral isolation from the blood specimens.  相似文献   

14.
Theiler's murine encephalomyelitis virus (TMEV) is a natural pathogen of the mouse and belongs to the Picornaviridae family. TMEV strains are divided into two subgroups on the basis of their pathogenicity. The first group contains two neurovirulent strains, FA and GDVII, which cause a rapid fatal encephalitis. The second group includes persistent strains, like DA and BeAn, which produce a biphasic neurological disease in susceptible mice. Persistence of these viruses in the white matter of the spinal cord leads to chronic inflammatory demyelination. L929 cells, which are susceptible to TMEV infection, were subjected to physicochemical mutagenesis. Cellular clones that became resistant to TMEV infection were selected by viral infection. Three such mutants resistant to strain GDVII were characterized to determine the step of the virus cycle that was inhibited. The mutation present in one of these mutant cell lines inhibited, by more than 1,000-fold, the entry of strain GDVII but hardly decreased infection by strain DA. In the two other cellular mutants, replication of the viral genome was slowed down. Interestingly, one of these mutant cell lines resisted infection by both the persistent and neurovirulent strains while the second cell line resisted infection by strain GDVII but remained susceptible to the persistent virus. These results show that although they have 95% identity at the amino acid sequence level, neurovirulent and persistent viruses use partly distinct pathways for both entry into cells and genome replication.  相似文献   

15.
Highly pathogenic avian influenza virus (HPAIV) continues to threaten human health. Non-human primate infection models of human influenza are desired. To establish an animal infection model with more natural transmission and to determine the pathogenicity of HPAIV isolated from a wild water bird in primates, we administered a Japanese isolate of HPAIV (A/whooper swan/Hokkaido/1/2008, H5N1 clade 2.3.2.1) to rhesus and cynomolgus monkeys, in droplet form, via the intratracheal route. Infection of the lower and upper respiratory tracts and viral shedding were observed in both macaques. Inoculation of rhesus monkeys with higher doses of the isolate resulted in stronger clinical symptoms of influenza. Our results demonstrate that HPAIV isolated from a water bird in Japan is pathogenic in monkeys by experimental inoculation, and provide a new method for HPAIV infection of non-human primate hosts, a good animal model for investigation of HPAIV pathogenicity.  相似文献   

16.
New opportunities for development of safe, effective live virus vaccines   总被引:1,自引:0,他引:1  
Effective vaccines are not available for most viral diseases. This situation may soon change when the full force of contemporary molecular biology is applied to immunoprophylaxis. In certain viral diseases, particularly those affecting the respiratory and gastrointestinal tracts, live attenuated vaccines are needed to confer effective protection. Until now the major obstacle to success has been genetic instability. It may be possible to construct stable, satisfactorily attenuated mutants by cloning viral DNA or RNA and then subjecting the cloned DNA to enzyme surgery to create viable deletion mutations. Modified cloned DNA derived from positive-strand viral RNA could then be transferred back into its virus by transfection of cells. Conversion of mutant cloned DNA into negative-strand RNA and transfer into its virus will require a more elaborate type of rescue.  相似文献   

17.
We previously reported that influenza A/swine/Korea/1204/2009(H1N2) virus was virulent and transmissible in ferrets in which the respiratory-droplet-transmissible virus (CT-Sw/1204) had acquired simultaneous hemagglutinin (HAD225G) and neuraminidase (NAS315N) mutations. Incorporating these mutations into the nonpathogenic A/swine/Korea/1130/2009(H1N2, Sw/1130) virus consequently altered pathogenicity and growth in animal models but could not establish efficient transmission or noticeable disease. We therefore exploited various reassortants of these two viruses to better understand and identify other viral factors responsible for pathogenicity, transmissibility, or both. We found that possession of the CT-Sw/1204 tripartite viral polymerase enhanced replicative ability and pathogenicity in mice more significantly than did expression of individual polymerase subunit proteins. In ferrets, homologous expression of viral RNA polymerase complex genes in the context of the mutant Sw/1130 carrying the HA225G and NA315N modifications induced optimal replication in the upper nasal and lower respiratory tracts and also promoted efficient aerosol transmission to respiratory droplet contact ferrets. These data show that the synergistic function of the tripartite polymerase gene complex of CT-Sw/1204 is critically important for virulence and transmission independent of the surface glycoproteins. Sequence comparison results reveal putative differences that are likely to be responsible for variation in disease. Our findings may help elucidate previously undefined viral factors that could expand the host range and disease severity induced by triple-reassortant swine viruses, including the A(H1N1)pdm09 virus, and therefore further justify the ongoing development of novel antiviral drugs targeting the viral polymerase complex subunits.  相似文献   

18.
Influenza virus neuraminidase (NA) cleaves terminal sialic acid residues on oligosaccharide chains that are receptors for virus binding, thus playing an important role in the release of virions from infected cells to promote the spread of cell-to-cell infection. In addition, NA plays a role at the initial stage of viral infection in the respiratory tract by degrading hemagglutination inhibitors in body fluid which competitively inhibit receptor binding of the virus. Current first line anti-influenza drugs are viral NA-specific inhibitors, which do not inhibit bacterial neuraminidases. Since neuraminidase producing bacteria have been isolated from oral and upper respiratory commensal bacterial flora, we posited that bacterial neuraminidases could decrease the antiviral effectiveness of NA inhibitor drugs in respiratory organs when viral NA is inhibited. Using in vitro models of infection, we aimed to clarify the effects of bacterial neuraminidases on influenza virus infection in the presence of the NA inhibitor drug zanamivir. We found that zanamivir reduced progeny virus yield to less than 2% of that in its absence, however the yield was restored almost entirely by the exogenous addition of bacterial neuraminidase from Streptococcus pneumoniae. Furthermore, cell-to-cell infection was severely inhibited by zanamivir but restored by the addition of bacterial neuraminidase. Next we examined the effects of bacterial neuraminidase on hemagglutination inhibition and infectivity neutralization activities of human saliva in the presence of zanamivir. We found that the drug enhanced both inhibitory activities of saliva, while the addition of bacterial neuraminidase diminished this enhancement. Altogether, our results showed that bacterial neuraminidases functioned as the predominant NA when viral NA was inhibited to promote the spread of infection and to inactivate the neutralization activity of saliva. We propose that neuraminidase from bacterial flora in patients may reduce the efficacy of NA inhibitor drugs during influenza virus infection. (295 words).  相似文献   

19.
R L Yauch  K Kerekes  K Saujani    B S Kim 《Journal of virology》1995,69(11):7315-7318
Intracerebral inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in a chronic, immunologically mediated demyelinating disease that shares many features with human multiple sclerosis. CD4+ T lymphocytes play a critical role in the pathogenesis of virus-induced demyelinating disease. We have identified a region within amino acid residues 24 to 37 of the VP3 capsid protein of TMEV (VP3(24-37)) that is recognized by T lymphocytes from the demyelination-susceptible SJL/J strain of mice. The T-cell response to VP3(24-37) represents a predominant Th-cell response against the virus from either TMEV-immunized or TMEV-infected SJL/J mice, and viral epitopes VP1(233-250), VP2(74-86), and VP3(24-37) account for most of the Th-cell response to TMEV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号