首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesonephric and paramesonephric ducts develop in different ways in male and female fetuses. We have analyzed the changes in the expression of cytokeratin and vimentin type of intermediate filaments and desmosomal plaque proteins in progressing and regressing genital ducts of rat fetuses. The concomitant changes in the basement membranes were detected by laminin antibody. Epithelial cells of the indifferent (Day 15) male and female mesonephric and paramesonephric ducts contained faint vimentin positivity which, however, later disappeared. Indifferent mesonephric duct epithelium stained strongly for cytokeratin, whereas in the corresponding paramesonephric duct only a weak and spotty positivity was seen. Immunocytochemical localization of cytokeratin filaments and desmosomal plaque proteins correlated with the ultrastructural differences in the apical junctional complexes of the mesonephric and paramesonephric ducts. Regardless of the ongoing regression of the male paramesonephric duct, cytokeratin positivity increased in the disorganizing epithelium; the most weak and a granular immunoreaction was seen in the cells found in the intensively vimentin-positive periductal mesenchyme. In the regressing female mesonephric duct cytokeratin positivity was lost before the final dissolution of the basement membrane. Immunoblotting analysis of cytokeratin and vimentin polypeptides of the individual genital ducts were in agreement with the immunocytochemical results obtained in 15- and 16-day-old fetuses. The results suggest that the expression of vimentin type intermediate filaments is an indication of the mesothelial origin of the genital ducts. The increase in cytokeratin positivity of the regressing paramesonephric duct epithelium suggests that the degenerative changes are initiated by the mesenchyme. Cytokeratin-positive cells found in the periductal mesenchyme of the male paramesonephric duct may be epithelial cells transforming into mesenchyme. The results emphasize a close relationship between the changes of the intermediate filament system and extracellular matrix upon differentiation of the fetal genital ducts.  相似文献   

2.
Abstract. The distribution of fibronectin and the morphological differentiation of the genital ducts was studied in rat fetuses at ages from 15 to 21 days. Fibronectin was localized with the peroxidase-antiperoxidase and avidin-biotin method at the electron- and light-microscope level. In 15-day-old male and female fetuses, fibronectin was localized as a continuous lamella around the mesonephric duct and as a discontinuous lamella around the paramesonephric duct. During the differentiation of the female paramesonephric duct, the fibronectin layer became continuous and remained so after the age of 16 days. The fibronectin layer of the male mesonephric duct remained continuous at all ages. The accumulation of mesenchymal cells on the outer surface of the female mesonephric duct and the concomitant detachment of the fibronectin layer around the duct suggests that mesenchymal regulation plays a role in the regression of the mesonephric duct. In the regressing male paramesonephric duct fibronectin was simultaneously lost in the condensed periductal mesenchyme, the places of epithelio-mesenchymal contact, and the epithelial cytoplasmic protrusions towards the mesenchyme. Ultrastructurally, fibronectin was localized in the basal laminae, on the cell membrane in contact with the extracellular material, and on the surface of the fibrillar and flocculent extracellular material. In addition to auto- and heterophagy, epithelio-mesenchymal interactions seem to play an important role in the regression of the genital ducts, although in different ways in males and females. The present results give additional support to the theory of the possible migration of epithelial cells into the surrounding mesenchyme during the regression of the paramesonephric duct.  相似文献   

3.
The differentiation of male and female rat genital ducts and their basement membranes were studied by light- and electron-microscopic localization of type-IV and -V collagen, laminin, and heparan sulfate proteoglycan at the fetal ages of 15-21 days. At 15 days, the basement membrane of the mesonephric duct was continuous in both sexes, whereas on the medial side of the paramesonephric duct, it was incomplete. The male mesonephric duct remained enveloped by a continuous basement membrane. Increasing accumulation of basement-membrane material in the periductal mesenchyme was regarded as incipient epididymal differentiation. Local expansions and slow degradation of the basement membrane were noted in the regressing female mesonephric duct. The female paramesonephric duct had acquired a continuous basement membrane by the age of 16 days. At this age, the incomplete basement membrane in the medial side of the male paramesonephric duct disappeared, and breaks in the lateral portion appeared. The formation of epitheliomesenchymal contacts and basal cytoplasmic blebs in the epithelial cells of the regressing paramesonephric duct coincided with the disappearance of the basement-membrane material in the condensed periductal mesenchyme. The asymmetric regression of the male paramesonephric duct was initiated in the immature medial side. The changes in the periductal matrix are indications of basic differences in the regulation of the development and regression of the genital ducts in different sexes.  相似文献   

4.
We analysed the expression of intermediate-filament proteins in the developing mesonephric duct (the precursor of the male genital ducts) and the paramesonephric duct (the precursor of the female genital ducts) of golden-hamster embryos using immunohistochemical methods. Embryos were investigated from the early stages of duct development, i.e. at 9.5 days post conceptionem (dpc), through sexual differentiation, until birth (15.5 dpc). Monospecific antibodies to vimentin or keratins 7, 8, 18 or 19 as well as two keratin antibodies that are pan-epithelial in human tissues were tested. Both ducts expressed vimentin to some degree from their early stages (mesonephric duct from 9.5 dpc onwards; paramesonephric duct from 10.5 dpc onwards) until birth. No keratins were detectable at these earliest stages. In the mesonephric duct, keratins 7, 18 and 19 appeared simultaneously at 10.5 dpc and persisted until birth. In the paramesonephric duct, only keratin 18 was detectable at first (at 12.0 dpc), with the expression of keratins 7 and 19 being delayed until 14.5 dpc. This feature was irrespective of sexual differentiation, which begins at 11.0 dpc, so that, in males, these keratins appeared on cue, even though the paramesonephric duct was regressing at this time. The expression of keratin 8 could not be demonstrated in either duct using the antibodies tested in our study. By 14.5 dpc, the differentiated male mesonephric duct and the differentiated female paramesonephric duct exhibited the same intermediate-filament protein pattern (weak vimentin expression and strong expression of keratins 7, 18 and 19), in spite of differences in the intermediate-filament protein patterns exhibited by the two ducts during early development. These different programmes of intermediate-filament protein regulation do not support the concept that the mesonephric duct makes a cellular contribution to the paramesonephric duct during the development of the latter.  相似文献   

5.
The present investigation has examined the ultrastructural differentiation of the genital ducts of both sexes of fetal mice. The emphasis of observations was placed on the phenomenon of morphogenetic cytolysis, particularly during the critical periods of Wolffian duct stabilization and Mullerian duct involution. Both developing and regressing genital ducts evidence extensive cytolysis. Autophagy appears to be the mechanism of morphogenetic changes in the developing male Wolffian duct. Autophagy, heterophagy, and degeneration in situ are all prominent cytolytic activities in female Wollfian duct involution. The developing female Mullerian duct undergoes extensive morphogenetic remodeling by the mechanisms of autophagy, heterophagy, and degeneration in situ. In the male Mullerian duct, autophagy, heterophagy, and degeneration in situ are also prominent. In addition, whole degenerated epithelial cells are extruded from the duct early in regression which may be realted to the transformation of periductal mesenchymal cells into an "epithelioid cell cuff" which does not form around the regressing Wolffian duct. The formation of this mesenchymal condensation surrounding the duct is also accompanied by the protrusion of Mullerian epithelial cell cytoplasm into the mesenchymal cells. These observations may evidence a complex epithelial-mesenchymal interaction occurring during male Mullerian duct involution.  相似文献   

6.
D Burk  A R Beaudoin 《Teratology》1977,16(3):247-259
The developmental origin of arsenate-induced renal agenesis was investigated. Pregnant Wistar rats were each injected once ip with 45 mg/kg sodium arsenate at day 10 (sperm day = day 0). Pregnancy was terminated at various times following injection and the embryos recovered and serially sectioned. Renal agenesis resulted when the mesonephric duct failded to give rise to a ureteric bud with subsequent failure of induction of the metanephric blastema. The underlying defect was retardation in growth of the mesonephric duct, first observed 48 hours after arsenate injection. A shortened mesonephric duct also resulted in a failure of the mesonephros to attain normal size and in the male resulted in absence of the ductus deferens, seminal vesicle a variable portion of the epididymis. Due to the intimate association of the mesonephric and growing paramesonephric ducts, a shortened mesonephric duct resulted in a shortened paramesonephric duct with resultant lack of a uterine horn.  相似文献   

7.
One hundred and twenty white rat embryos 13-22-day-old have been irradiated with x-rays (the dose 250 R) on the 12th-14th day of embryogenesis. The embryos have been divided into series of sagittal, frontal, transversal sections and stained by means of general histological methods. The irradiation performed on the days mentioned does not affect formation of the paramesonephric ducts. In all the experimental animals the caudal end of the paramesonephric duct is separated from the mesonephric duct as a solid cellular cord in which the lumen appears later. In the experimental females the disturbances developed after irradiation are manifested first of all in retardation of the main stages of the organ's formation; the retardation is observed: in fusion of the paramesonephric ducts, in resorption of the medial septum between the fused ducts, in separating the sinuous part of the vagina from the urogenital sinus, in recanalization of the vaginal epithelial cord. More severe lesions are presented as agenesia of the vaginal sinuous part and as its atresia represented by a transversal septum of the organ. The disorders in the vagina development are depended on massive primary necrobiotic radial lesions of the mesenchymal cells around the epithelial anlages of the small pelvis.  相似文献   

8.
Antibodies to type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin were used to study the regression of the rat Mullerian duct. All four of these matrix constituents are located at the perimeter of the Mullerian duct within the ductal basement membrane. As the Mullerian duct regresses, the staining of all of these basement membrane constituents becomes irregular and discontinuous. Fibronectin, which is also present in the interstitium, becomes undetectable in the mesenchyme which condenses around the regressing Mullerian duct. These data indicate that degradation of the extracellular matrix around the male Mullerian duct is a central event in the regression of this structure.  相似文献   

9.
The distribution of androgen receptors (ARs) in paraffin serial sections of day 17 and day 18 male and female mouse embryos was investigated. In the cranial section of the genital tract AR expression was restricted to Wolffian structures while Müllerian ducts and surrounding mesenchyme were AR negative. In the fusion zone with the urogenital sinus the epithelial components of the vaginal bud were clearly distinguished by differential AR expression, which was faint in the Wolffian ducts, totally missing in the Müllerian ducts, and intense in the sinus ridges with the most intense expression in the morphogenetically active mesenchyme, indicating a new mechanism of negative control of vagina formation via androgens. Expression of ARs outside the genital tract was observed: (1) in loose interstitial mesenchyme extending into the retroperitoneal space up to the coeliac artery, indicating androgen effects during ascent of the kidneys and descent of intraperitoneal organs, (2) in the trigone of the bladder indicating androgen involvement in the development of the vesico-ureteral junction, and (3) in loose mesenchyme between striated muscle fibres and around pelvic skeletal elements, indicating mediation of androgen effects on the musculoskeletal system via loose mesenchyme.  相似文献   

10.
A study was undertaken to determine (1) the effects of endogenous Müllerian inhibiting substance (MIS) on the developing human fetal genital tract; (2) the time in fetal life when MIS is first capable of inhibiting the growth of the embryonic Müllerian ducts; and (3) the reversibility of the effects of MIS on the developing male Müllerian ducts. Human fetal reproductive tracts were transplanted and grown for sustained periods in vivo in athymic nude mice. The genital tracts from 12 male human fetuses, ages 51 to 68 days postovulation, were grafted without their associated gonads into castrated murine hosts and grown for 30 to 70 days. Controls consisted of genital tracts from 8 female human fetuses, ages day 53 to 70 that were grown under identical conditions. Male specimens grew to approximately one-half the size of female specimens and disclosed varying degrees of inhibition of the Müllerian duct system from absence of the Müllerian ducts in older specimens (after Day 63) to poorly segregated segments of stroma as the mildest defect (less than Day 61). It is concluded that (1) MIS secretion by the embryonic testes probably begins before Day 51 of gestation; (2) the effects of MIS are progressive during the so-called critical window; (3) the effects of MIS are permanent; and (4) the mesenchyme is an important target of MIS.  相似文献   

11.
Mullerian inhibiting substance (MIS), a glycoprotein from the fetal testis causing regression of the embryonic Mullerian duct, can be inhibited in vitro in the presence of Mn2+ by a wide range of nucleotides including GTP, NAD, ATP, AMP, and several nonhydrolyzable synthetic ATP analogs. Extracellular nucleotide pyrophosphatase (NPPase), an enzyme able to hydrolyze the wide variety of the nucleotides and analogs found to inhibit Mullerian duct regression, was studied by histochemical staining (H. Sierakowska and D. Shugar (1963) to determine if NPPase localized in or around the Mullerian duct during regression. Frozen sections of urogenital ridges from to rat fetuses (n = 77) were incubated with a-naphthyl thymidine-5′-phosphate (naphthyl TMP) and Fast Red TR. Nucleotide pyrophosphatase hydrolyzes naphthyl TMP, releasing naphthol, which then reacts with Fast Red to produce color at the enzyme site. Nucleotide hydrolysis was detected around regressing male (n = 16) Mullerian duct cells at days of gestation, but no hydrolysis was detected around female (n = 17) Mullerian duct cells at any stage. Controls (n = 24) incubated without substrate did not stain. Addition of exogenous ATP (n = 20) to the histochemical incubation medium inhibited nucleotide hydrolysis on male Mullerian ducts, suggesting that this staining is specific for pyrophosphatase activity. Results in vivo were confirmed in vitro by incubating day female rat urogenital ridges with MIS for 72 hr prior to histochemical staining. The addition of testosterone to MIS was obligatory to detect staining in vitro (n = 10). The localized NPPase activity around the regressing Mullerian duct suggests that NPPase may appear as a consequence of duct regression and may act to control the degree of membrane phosphorylation by degrading excess trinucleotides.  相似文献   

12.
Amniotes, regardless of genetic sex, develop two sets of genital ducts: the Wolffian and Müllerian ducts. For normal sexual development to occur, one duct must differentiate into its corresponding organs, and the other must regress. In mammals, the Wolffian duct differentiates into the male reproductive tract, mainly the vasa deferentia, epididymides, and seminal vesicles, whereas the Müllerian duct develops into the four components of the female reproductive tract, the oviducts, uterus, cervix, and upper third of the vagina. In males, the fetal Leydig cells produce testosterone, which stimulates the differentiation of the Wolffian duct, whereas the Sertoli cells of the fetal testes express anti-Müllerian hormone, which activates the regression of the Müllerian duct. Anti-Müllerian hormone is a member of the transforming growth factor-beta (TGF-beta) family of secreted signaling molecules and has been shown to signal through the BMP pathway. It binds to its type II receptor, anti-Müllerian hormone receptor 2 (AMHR2), in the Müllerian duct mesenchyme and through an unknown mechanism(s); the mesenchyme induces the regression of the Müllerian duct mesoepithelium. Using tissue-specific gene inactivation with an Amhr2-Cre allele, we have determined that two TGF-beta type I receptors (Acvr1 and Bmpr1a) and all three BMP receptor-Smads (Smad1, Smad5, and Smad8) function redundantly in transducing the anti-Müllerian hormone signal required for Müllerian duct regression. Loss of these genes in the Müllerian duct mesenchyme results in male infertility due to retention of Müllerian duct derivatives in an otherwise virilized male.  相似文献   

13.
During male sexual differentiation, the transforming growth factor-β (TGF-β) signaling molecule anti-Müllerian hormone (AMH; also known as Müllerian inhibiting substance, MIS) is secreted by the fetal testes and induces regression of the Müllerian ducts, the primordia of the female reproductive tract organs. Currently, the molecular identity of downstream events regulated by the AMH signaling pathway remains unclear. We found that male-specific Wnt4 expression in mouse Müllerian duct mesenchyme depends upon AMH signaling, implicating the WNT pathway as a downstream mediator of Müllerian duct regression. Inactivation of β-catenin, a mediator of the canonical WNT pathway, did not affect AMH signaling activation in the Müllerian duct mesenchyme, but did block Müllerian duct regression. These data suggest that β-catenin mediates AMH signaling for Müllerian duct regression during male sexual differentiation.  相似文献   

14.
The present study investigates the coevolution of a particular male genital process and the female spermathecal ducts in a clade of stalk-eyed flies (Diptera, Diopsidae) and debates the underlying evolutionary mechanisms. The fine morphology and interaction of the male and female genitalic structures are reconstructed from serial sections of mating pairs in one of the species. It is found that the male genital process traverses the common spermathecal duct to enter the base of one of the separate spermathecal ducts during the mating. Spermatozoa and accessory secretions are not transferred through the male genital process but can be discharged only from the male gonopore near its base. A detailed morphometric study reveals low intraspecific variation and hypoallometry of the male genital process. Across 17 species studied comparatively, the lengths of the male genital process and the female common and separate spermathecal ducts are highly variable. The length of the male genital process is correlated significantly with that of the female common spermathecal duct, but not with that of the separate spermathecal ducts. Based on the combined evidence it is concluded that the male genital process and the female common spermathecal duct have coevolved, and that sexual selection by cryptic female choice constitutes a possible and parsimonious explanation for their coevolution. Alternative or additional explanations in terms of sexually antagonistic coevolution cannot be ruled out conclusively, but are not supported by the available evidence.  相似文献   

15.
Müllerian ducts of male chickens undergo regression around day 12 of incubation, but the underlining mechanisms remain unclear. The purpose of this study was to identify factors that contribute to regression of the Müllerian duct in the chicken. We first employed annealing control primer-based RT-PCR to screen candidate genes differentially expressed in the Müllerian ducts between male and female. Four differentially expressed genes (MSX2, GAL10, VCP and PLCH1) were partially sequenced. The expression of mRNA of the latter genes and MSX1 in the male and female Müllerian ducts were compared at 7.5, 8 and 9 days of incubation using semi-quantitative RT-PCR. The results indicated that both MSX1 and MSX2 mRNA was highly expressed in the male Müllerian duct at day 9 of incubation, whereas, PLCH1 mRNA was lower in the male duct at day 9 of incubation compared to that of the female duct. Although VCP mRNA was expressed in both left and right female Müllerian ducts, no expression was detected in the male duct. Whole mount in situ hybridyzation analysis showed that the expression of MSX1 and MSX2 mRNA were localized specifically in the mesenchymal cells of the male Müllerian duct at day 9 of incubation. In contrast, VCP mRNA expression was observed in both mesenchymal and epithelial cells of the female Müllerian duct but not detected in the male duct. These results suggest that both up-regulation of MSX1 and MSX2 mRNA expression is involved in the regression of the Müllerian duct in male chicken embryo, whereas VCP expression is involved in development of the female duct.  相似文献   

16.
The Müllerian ducts give rise to the female reproductive tract, including the Fallopian tubes, uterus, cervix, and anterior vagina. In male embryos, the Müllerian ducts regress, preventing the formation of female organs. We introduced the bacterial lacZ gene, encoding beta-galactosidase (beta-gal), into the AMHR-II locus (Amhr2) by gene targeting in mouse embryonic stem (ES) cells to mark Müllerian duct differentiation and regression. We show that Amhr2-lacZ heterozygotes express beta-gal activity in an Amhr2-specific pattern. In the gonads, beta-gal activity was detected in Sertoli cells of the testes from 2 weeks after birth, and fetal ovaries and granulosa cells of the adult ovary. beta-gal activity was first detected in the rostral mesenchyme of the Müllerian ducts at 12.5 days post coitus (dpc) in both sexes but soon thereafter expression was found along the entire length of the Müllerian ducts with higher levels initially found in males. In females, beta-gal activity was restricted to one side of the ductal mesoepithelium, whereas in males beta-gal expression encircled the duct. beta-gal activity was also detected in the coelomic epithelium at 13.5 and 14.5 dpc. In male embryos, mesenchymal beta-gal activity permitted the visualization of the temporal and spatial pattern of Müllerian duct regression. This pattern was similar to that observed using a Müllerian duct mesoepithelium lacZ reporter, indicating a coordinated loss of Müllerian duct mesoepithelium and Amhr2-expressing mesenchyme.  相似文献   

17.
Programmed cell death of the Müllerian duct eliminates the primitive female reproductive tract during normal male sexual differentiation. Müllerian inhibiting substance (MIS or AMH) triggers regression by propagating a BMP-like signaling pathway in the Müllerian mesenchyme that culminates in apoptosis of the Müllerian duct epithelium. Presently, the paracrine signal(s) used in this developmental event are undefined. We have identified a member of the matrix metalloproteinase gene family, Mmp2, as one of the first candidate target genes downstream of the MIS cascade to function as a paracrine death factor in Müllerian duct regression. Consistent with a role in regression, Mmp2 expression was significantly elevated in male but not female Müllerian duct mesenchyme. Furthermore, this sexually dimorphic expression of Mmp2 was extinguished in mice lacking the MIS ligand, suggesting strongly that Mmp2 expression is regulated by MIS signaling. Using rat organ genital ridge organ cultures, we found that inhibition of MMP2 activity prevented MIS-induced regression, whereas activation of MMP2 promoted ligand-independent Müllerian duct regression. Finally, MMP2 antisense experiments resulted in partial blockage of Müllerian duct regression. Based on our findings, we propose that similar to other developmental programs where selective elimination or remodeling of tissues occurs, localized induction of extracellular proteinases is critical for normal male urogenital development.  相似文献   

18.
Gonadal differentiation has a determinative influence on sex development in human embryos. Disorders of sexual development (DSD) have been associated with persistent embryonal differentiation stages. Between 1998 and 2015, 139 female patients with various (DSD) underwent operations at the Scientific Center of Obstetrics, Gynaecology and Perynatology in Moscow, Russia. Clinical investigations included karyotyping, ultrasound imaging, hormonal measurement and investigations of gonadal morphology. The male characteristics in the embryo are imposed by testicular hormones. When these are absent or inactive, the fetus may be arrested at between developmental stages, or stay on indifferent stage and become phenotypically female. A systematic analysis of gonadal morphology in DSD patients and a literature review revealed some controversies and led us to formulate a new hypothesis about sex differentiation. Proliferation of the mesonephric system (tubules and corpuscles) in the gonads stimulates the masculinization of gonads to testis. Sustentacular Sertoli cells of the testes are derived from mesonephric excretory tubules, while interstitial Leydig cells are derived from the original mesenchyme of the mesonephros. According of the new hypothesis, the original mesonephric cells (tubules and corpuscles) potentially persist in the ovarian parenchyma. In female gonads, some mesonephric excretory tubules regress and lose the tubular structure, but form ovarian theca interna and externa, becoming analogous to the sustentacular Sertoli cells in the testis. The ovarian interstitial Leydig cells are derived from intertubal mesenchyme of the mesonephros, similar to what occurs in male gonads (testis). Surprisingly, the leading determinative factor in sexual differentiation of the gonads is the mesonephros, represented by the embryonic urinary system.  相似文献   

19.
Tenascin is a compound of the mesenchymal extracellular matrix and has been proposed as a possible mediator in epithelial-mesenchymal interactions, because of its characteristic distribution in tissues during fetal development. In the present study, we have investigated by immunofluorescence the changes in the distribution of tenascin during development of the mouse urogenital sinus, a process in which tissue interactions were found to be essential. Tenascin first appears in dorsal mesenchyme on days 13-15 of gestation, coinciding with morphological changes of the epithelium. During male development, tenascin accumulates in the dorsal mesenchyme around the junction of Wolffian ducts, but not in the ventral mesenchyme, into which prostatic buds (prostate gland anlagen) project from the sinus epithelium. During female development, the mesenchyme that participates in the downgrowth of the vagina (derived from Müllerian ducts) stains intensively for tenascin. In both of these tenascin-positive areas, the epithelium undergoes conspicuous morphogenetic changes. The results suggest that mesenchymal tenascin could be involved in the epithelial morphogenesis of the sinus, especially in the morphogenesis of the genital ducts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号