首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbonic anhydrase II (CAII) is a multifunctional enzyme found in oligodendrocytes and astrocytes in normal mouse brains. We have begun to compare the glial cells in primary cultures from neonatal genetically CAII-deficient (Car) mice to those from normal (con) mice in order to detect developmental defects, if any, in Car glial cells. In con cultures intensely CAII-positive cells costained with antibodies against the oligodendrocytic markers, O4 and myelin basic protein (MBP), respectively. Most (82%) of the CAII-positive cells were O4-positive, but only 60% were MBP-positive. Some clumps of GFAP-positive cells were CAII-positive. At each respective number of days in vitro (DIV) total numbers of O4-positive cells were similar in Car and con cultures, and total numbers of galactocerebroside-positive cells also were similar in Car and con cultures. However, compared to cells in con cultures at 7 DIV, a lower percent of Car cells in the oligodendrocyte lineage expressed MBP, and morphological differentiation also was subnormal in that the Car cells showed fewer processes and membrane sheets. Car and con cultures expressed similar numbers of MBP-positive cells by 10 DIV. The results suggest a temporary delay in the maturation of Car oligodendrocytes.  相似文献   

2.
Incorporation of 5-bromodeoxyuridine (BUdR) into developing newborn rat cerebellum organ cultures inhibited formation of myelin without apparent effect on morphological maturation. Inhibition of the appearance of myelin, which usually begins on 10–11 days in vitro (DIV), occurred only when BUdR was present during 6 and 7 DIV, thus suggesting a ‘critical’ cell division on those days for the differentiating oligodendrocytes that will produce myelin.  相似文献   

3.
The activities of three myelin-associated enzymes, carbonic anhydrase, 5'-nucleotidase, and 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP), were measured in oligodendrocytes, neurons, and astrocytes isolated from the brain of rats 10, 20, 60, and 120 days old. The carbonic anhydrase specific activity in oligodendrocytes was three- to fivefold higher than that in brain homogenates at each age, and, at all the ages, low activities of this enzyme were measured in neurons and astrocytes. The oligodendrocytes and astrocytes from the brains of rats at all ages had higher activities of the membrane-bound enzyme 5'-nucleotidase than was observed in neurons. In oligodendrocytes from 10- and 20-day-old rats, the 5'-nucleotidase activity was two-to threefold the activity in the homogenates (i.e., relative specific activity = 2.0-3.0), and the relative specific activity of this enzyme in the oligodendrocytes declined to less than 1.0 at the later ages, concomitant with the accumulation of 5'-nucleotidase in myelin. The CNP activity was always higher in oligodendrocytes than in neurons, but not appreciably different from that in astrocytes from 20 days of age onward. The relative specific activity of CNP was highest in the oligodendrocytes from 10-day-old rats but was lower, at all ages, than we had observed in bovine oligodendrocytes. These enzyme activities in oligodendroglia are quite different in amount and developmental pattern from those reported previously for myelin.  相似文献   

4.
Abstract: Excitatory amino acid (EAA) receptors and EAA-mediated stimulation of polyphosphoinositide (poly-PI) turnover were studied in cultured neurons at different days in vitro (DIV). Six main observations have emerged from these studies: (a) Neurons increased their sensitivity to EAAs as a function of time in culture, indicated by increasing EAA-mediated poly-PI turnover, (b) Extracellular Ca2+ concentration played an important role in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-stimulated poly-PI turnover in cells at 4 DIV, whereas poly-PI turnover mediated by l -glutamate and trans -1-amino-cyclopentane-1,3-dicarboxylic acid was not Ca2+-dependent. (c) A marked stimulation of poly-PI turnover by AMPA was seen in the cultured neurons at 4 DIV, but not at 17 DIV, suggesting that a distinct EAA receptor sensitive to AMPA is transiently expressed, (d) The Ca2+ ionophore A23187 increased poly-PI turnover in cultured neurons, suggesting that Ca2+ entry is involved in stimulating poly-PI turnover, (e) Stimulation of poly-PI turnover by carbachol was greater in neurons at 17 DIV as compared with −4 DIV, and appeared to be Ca2+-dependent across DIV. (f) 6-Cyano-7-nitroquinoxaline-2,3-dione, an antagonist for non- N -methyl- d -aspartate ionotropic EAA receptors, inhibited 100% and 35% of AMPA-and quisqualate-induced poly-PI turnover, respectively, suggesting an involvement of ionotropic AMPA/quisqualate receptors in stimulating poly-PI turnover.  相似文献   

5.
Abstract: Excitatory amino acid (EAA)-induced polyphosphoinositide (PPI) hydrolysis was studied during the development in culture of cerebellar granule cells. The developmental pattern was similar using metabotropic glutamate (Glu) receptor (mGluR) agonists, including L-Glu, quisqualate, and trans -(±)-1-amino-1,3-cyclopentanedicarboxylic acid: The stimulation of [3H]inositol monophosphate ([3H]-InsP) formation was low at 2 days in vitro (DIV), but the response increased steeply, reaching a peak at 4 DIV, followed by a progressive decline. In contrast, carbamylcholine-induced PPI hydrolysis exhibited a plateau after a pronounced increase during the first week in vitro. At 6 DIV, but not at 4 DIV, when the activity peaked, PPI hydrolysis elicited by Glu was reduced by the N -methyl- d -aspartate (NMDA) receptor antagonist MK-801, indicating that in cultured granule cells, NMDA receptors contribute to [3H]-InsP formation and that this component of the response develops relatively late. Accordingly, NMDA-induced [3H]-InsP formation, estimated under Mg2+-free conditions, increased markedly from very low values at 2 DIV to a plateau at 8–10 DIV. The developmental pattern of EAA-induced PPI hydrolysis was paralleled by changes in the level of an mRNA for a specific mGluR subtype ( mGluR1 mRNA). RNA blot analysis performed with the pmGR1 cDNA probe revealed that the hybridization signal in RNA extracts from cultures at 1 DIV was very weak, but mGluR mRNA levels increased dramatically between 1 and 3 DIV, followed by a progressive decrease, so that by 15 DIV the mRNA levels were only ∼10% of the values at 3 DIV. These observations indicate that the functional expression of the mGluR is subject to developmental regulation, which critically involves receptor mRNA levels.  相似文献   

6.
Four groups of adult male hypophysectomized rats were injected subcutaneously twice daily between 0800-0900 hr and 1600-1700 hr with either saline diluent, 150 micrograms sheep prolactin and/or growth hormone (GH); intact rats received either saline or 150 micrograms bromocriptine twice daily. After 4 days of treatment, lysosomal enzyme assays revealed significant elevations in both acid phosphatase and alpha-mannosidase enzyme activities in the Harderian glands of saline-injected hypophysectomized rats compared to those in intact controls. beta-Glucuronidase levels were depressed and hexosaminidase activity unaffected by hypophysectomy treatment alone compared to intact controls. Lysosomal enzyme activities in hypophysectomized animals treated with prolactin were not different from the hypophysectomized control animals. However, treatment with GH alone or in combination with prolactin had a significant inhibitory effect on beta-glucuronidase, hexosaminidase, and alpha-mannosidase enzyme activities in the Harderian gland of hypophysectomized animals. Bromocriptine treatment in intact rats only elevated acid phosphatase activity. In summary, the patterns of responses did not reveal a role for prolactin in the control of Harderian gland lysosomal enzyme activities by the pituitary. However, some of the influence on this target system may be exerted by growth hormone.  相似文献   

7.
The results of recent immunocytochemical experiments suggest that glutamine synthetase (GS) in the rat CNS may not be confined to astrocytes. In the present study, GS activity was assayed in oligodendrocytes isolated from bovine brain and in oligodendrocytes, astrocytes, and neurons isolated from rat forebrain, and the results were compared with new immunochemical data. Among the cells isolated from rat brain, astrocytes had the highest specific activities of GS, followed by oligodendrocytes. Oligodendrocytes isolated from white matter of bovine brain had GS specific activities almost fivefold higher than those in white matter homogenates. Immunocytochemical staining also showed the presence of GS in both oligodendrocytes and astrocytes in bovine forebrain, in three white-matter regions of rat brain, and in Vibratome sections as well as paraffin sections.  相似文献   

8.
Lysosomal carboxypeptidase A (cathepsin A) is synthetized in the form of preproenzyme, which undergoes to active enzyme as a result of post-translational modification. It splits off C-terminal amino acid residues from peptides and proteins and synergizes with other proteases in degradation of cellular proteins in lysosomes. Lysosomal carboxypeptidase A has an effect on peptide hormones and peptides of biological activity of tissues and body fluids as well. It forms complexes with some glycosidases that protects them against proteolytic degradation. Deficiency of this enzyme induces storage diseases. Lysosomal carboxypeptidase A as multifunctional enzyme plays an important regulatory role in organismal metabolism.  相似文献   

9.
Effect of estrogen on lysosomal enzyme activities in rat heart   总被引:2,自引:0,他引:2  
The activities per microgram DNA of five lysosomal enzymes [cathepsin D, cathepsin B, beta-N-acetylglucosaminidase (beta-NAG), beta-glucuronidase, and acid phosphatase] were measured in homogenates of female and male rat (Sprague-Dawley) hearts. Female rats were studied during stages of the estrous cycle and at 3 weeks after ovariectomy. Three-week-postovariectomized female rats and intact male rats were injected subcutaneously with 17 beta-estradiol-3-benzoate. Lysosomal enzyme activities in the male rat heart were more responsive to exogenous estradiol than were activities in the female rat heart. Cathepsin B, beta-NAG, and beta-glucuronidase were increased dramatically in the male rat heart upon short-term administration of estrogen (4 days). In both female and male rat hearts, activities of two lysosomal proteinases, cathepsins B and D, were reduced significantly (approximately 50%) by extended administration of estrogen for 10 days.  相似文献   

10.
Crude subcellular fractions were prepared from adult rat brains by differential centrifugation of brain homogenates. Greater than 98% of the cellular mitochondrial marker enzyme activity sedimented in the heavy and light mitochondrial pellets, and less than 1% of the activity sedimented in microsomal pellets. Lysosomal marker enzyme activities mainly (71-78% of cellular activity) sedimented in the heavy and light mitochondrial pellets. Significant amounts of the lysosomal marker enzyme activity also sedimented in the crude microsomal pellets (9-13% of total) and high-speed supernatants (14-16% of total). The specific activities of microsomal and peroxisomal marker enzyme activities were highest in the crude microsomal pellets. Fractionation of the crude microsomal pellets on Nycodenz gradients resulted in the separation of the bulk of the remaining mitochondrial, lysosomal, and microsomal enzyme activities from peroxisomes. Fatty acyl-CoA synthetase activities separated on Nycodenz gradients as two distinct peaks, and the minor peak of the activities was in the peroxisomal enriched fraction. Fatty acid beta-oxidation activities also separated as two distinct peaks, and the activities were highest in the peroxisomal enriched fractions. Mitochondria were purified from the heavy mitochondrial pellets by Percoll density gradients. Fatty acyl-CoA synthetase and fatty acid beta-oxidation activities were present in both the purified mitochondrial and peroxisomal enriched fractions. Stearoyl-CoA synthetase activities were severalfold greater compared to lignoceroyl-CoA synthetase, and stearic acid beta-oxidation was severalfold greater compared to lignoceric acid beta-oxidation in purified mitochondrial and peroxisomal enriched fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: Primary cultures of cerebellar granule cells (CGCs) grown in high-K+ (25 mM; K25) medium progressively differentiate in vitro. Differentiation is noticeable after 3–4 days in vitro (DIV) and reach a mature stage after 8 DIV. Longer cultivation of CGCs (>13 DIV) triggers the processes of spontaneous cell death. However, if cultured in normal physiological K+ concentration (5 mM; K5), a significant proportion of the cells dies by the end of the first week in culture. To address the role of protein kinase C (PKC) in the development of CGCs, we measured the kinase activity as well as the protein level of the kinase isoforms. As the K25 CGC culture proceeded, the PKC activity time-dependently increased by 3.2-fold, reaching a steady state at 8 DIV. Western blot analysis using PKC isoform-specific antibodies revealed an increase in levels of PKC α, γ, μ, λ, and ι from 2 to 8 DIV. A slight increase or decrease at 4 DIV was observed for PKC ε and βII, respectively, whereas no significant change was observed for βI. The isoforms of δ, θ, η, and ζ were not detected. Comparing the 14 DIV cultures with the 10 DIV cultures, the immunoreactivities of PKC ι and ε were decreased, those of PKC α, βI, βII, γ, and λ were unchanged, whereas that of PKC μ was still increased. In K5 cultures, the immunoreactivity of each PKC isoform at 2–4 DIV was similar to that observed in K25 cells, although no remarkable differentiation features were observed. Coordinated with the appearance of cell death at 8 DIV in low-K+ cultures, levels of PKC α, μ, λ, and ι, but not the others, were markedly decreased. The NMDA receptor antagonists MK-801 and 2-amino-5-phosphopentanoic acid markedly prevented the age-induced apoptosis of CGCs, and the cells survived >18 DIV under these conditions. The cytoprotective effect of MK-801 was concomitant with the increases in levels of PKC γ, λ, ι, and μ at 10 and 14 DIV. In addition, the PKC ε level was increased at 14 DIV but decreased at early stages, whereas PKC α, βI, and βII levels were unchanged, as compared with K25 culture alone. Taken together, induction and up-regulation of PKC isoforms may play an important role in the maintenance of CGC survival by depolarization and MK-801.  相似文献   

12.
Sialidase activities have been studied in bovine thyroid using sialoglycolipids, sialoglycoproteins, sialo-oligosaccharides and fluorogenic 4-methylumbelliferyl-alpha-D-N-acetylneuraminate as substrates. No sialidase activity could be detected towards native glycoprotein substrates. From enzyme kinetics, effector data and more convincingly from subcellular studies it became clear that in bovine thyroid at least two sialidase activities were present, a sialyllactitol sialidase confined to the lysosomal membrane and a glycolipid sialidase residing in the plasma membrane and displaying the features of a true ectoenzyme. The lipid requirement for full enzyme activity supported the membrane bound character of both sialidase activities. A soluble sialidase activity could not be demonstrated. After solubilization by CHAPS treatment, partial purification of the sialyllactitol sialidase could be achieved by affinity chromatography (Sepharose diamino dipropylamino-N-acetylneuraminic acid). The purified enzyme was extremely labile. Titration of the sialidase preparation with amino acid modifying agents revealed that sulfhydryl- and tryptophanyl groups were essential for the sialidase action.  相似文献   

13.
Peroxisomes are now recognized to play important cellular functions and its dysfunction leads to a group of neurological disorders. This study reports peroxisomal enzyme activities in cultured glial cells and peroxisomes isolated from cultured oligodendrocytes and C6 glial cells. Peroxisomal enzyme activities were found to be higher in oligodendroglial cells than in astrocytes or mixed glial cells. We also developed a method for the isolation of peroxisomes from glial cells by a combination of differential and density gradient centrifugation techniques. Peroxisomes from oligodendrocytes in nycodenz gradient were isolated at a density of 1.165 g/ml ± 0.011. Activities of dihydroxyacetone phosphate acyl transferase, -oxidation of lignoceric acid and -oxidation of phytanic acid were almost exclusively associated with the distribution of catalase activity (a marker enzyme for peroxisomes) in the gradient. This protocol should be a resource for studies designed to investigate the structure and function of peroxisomes in brain cells.  相似文献   

14.
The quantitative changes and metabolism of GABA and putative amino acid neurotransmitters during early developmental stages in the organotypic culture of newborn mouse cerebellum were examined by using the high-performance liquid chromatograph (HPLC) technique. D-[U-14C]Glucose was used as a precursor of amino acids. To analyze amino acid neurotransmitters, explants were incubated for 4 weeks under standard conditions. The amount of GABA linearly increased from 8.7 +/- 1.3 nmol/mg protein (2 days in vitro, 2 DIV) to 26.5 +/- 6.1 nmol/mg protein (15 DIV) and was saturated after that (24.0 +/- 3.6 nmol/mg protein at 30 DIV). During the period of GABA increase, the capability for GABA synthesis from [14C]glucose increased rapidly from 3.03 +/- 0.67 nCi/mg protein (2 DIV, 3 h incubation) to 9.32 +/- 1.34 nCi/mg protein (15 DIV, 3 h incubation). In the case of glutamic acid, a putative neurotransmitter of granule cell parallel fibers in the cerebellum, the amount in explants was nearly constant during incubation, in contrast with the fact that the amount in vivo gradually increased. However, the capability for glutamic acid synthesis from [14C]glucose increased from 10.80 +/- 3.01 nCi/mg protein (2 DIV, 1 h incubation) to 27.62 +/- 4.71 nCi/mg protein (22 DIV, 1 h incubation). In the case of taurine, found in abundance in fetal brain and supposed to play a specific role in the development and maturation of the central nervous system, the amount in explants decreased from 139.8 +/- 4.0 nmol/mg protein (2 DIV) to 54.0 +/- 0.8 nmol/mg protein (30 DIV).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The present paper establishes a 5'-polynucleotide kinase activity associated with the bovine and human brain enzyme 2':3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37) in addition to known extremely high hydrolysis rates against 2':3'-cyclic nucleotides. Modulation of the enzyme activity by the addition of polyadenylate (5') and polyuridylate (5'), histone F3, myelin basic protein (MBP), and other basic molecules suggest that RNA may be the natural substrate for both enzymes. These enzymes, isolated from brain and present in very high activities in oligodendrocytes and in isolated myelin, probably have complex functions.  相似文献   

16.
A long-term cell culture system was used to study maturation, aging, and death of cortical neurons. Mouse cortical neurons were maintained in culture in serum-free medium (Neurobasal supplemented with B27) for 60 days in vitro (DIV). The levels of several proteins were evaluated by immunoblotting to demonstrate that these neurons matured by developing dendrites and synapses and remained continuously healthy for 60 DIV. During their maturation, cortical neurons showed increased or stable protein expression of glycolytic enzyme, synaptophysin, synapsin IIa, alpha and beta synucleins, and glutamate receptors. Synaptogenesis was prominent during the first 15 days and then synaptic markers remained stable through DIV60. Very early during dendritic development at DIV3, beta-synuclein (but not alpha-synuclein) was localized at the base of dendritic growth cones identified by MAP2 and alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptor GluR1. In mature neurons, alpha and beta synucleins colocalized in presynaptic axon terminals. Expression of N-methyl-D-aspartate (NMDA) and AMPA receptors preceded the formation of synapses. Glutamate receptors continued to be expressed strongly through DIV60. Cortical neurons aging in vitro displayed a complex profile of protein damage as identified by protein nitration. During cortical neuron aging, some proteins showed increased nitration, while other proteins showed decreased nitration. After exposure to DNA damaging agent, young (DIV5) and old (DIV60) cortical neurons activated apoptosis mechanisms, including caspase-3 cleavage and poly(ADP)-ribose polymerase inactivation. We show that cultured mouse cortical neurons can be maintained for long term. Cortical neurons display compartmental changes in the localization of synucleins during maturation in vitro. These neurons sustain protein nitration during aging and exhibit age-related variations in the biochemistry of neuronal apoptosis.  相似文献   

17.
DNA synthesis in nuclei and mitochondria purified from serum-supplemented rat glial cell cultures at different days after plating was studied. Furthermore in mitochondria, some enzymatic activities related to energy transduction (citrate synthase, malate dehydrogenase, total NADH-cytochromec reductase, cytochrome oxidase and glutamate dehydrogenase) were measured. For DNA labeling [methyl-3H]thymidine was added to the culture medium at different days after plating. During the culture times studied the specific activity of total, nuclear, and mitochondrial DNA decreased from 8 days in vitro (DIV) to 21 DIV and increased at 30 DIV. The specific activity of nuclear DNA was always higher than that of mitochondrial DNA. The specific activity of the above mentioned mitochondrial enzymes increased from 8 DIV up to 21 DIV and decreased at 30 DIV, suggesting a relationship between the energy metabolism and the differentiation of glial cells in culture.The AA. would like to dedicate this paper to the memory of Dr. Ida Serra, Associate Professor of Biochemistry at the Medical Faculty, University of Catania, who prematurely died, after this paper was submitted for publication.  相似文献   

18.
The stabilities of nine rat liver cytosol enzymes were compared at a variety of pH values. The cytosol enzymes studied were (a) those with half-lives in vivo of 3 days or longer: lactate dehydrogenase, arginase, glyceraldehyde phosphate dehydrogenase and alanine aminotransferase, (b) those with half-lives in vivo shorter than 2 days; glucokinase, dihydroorotase, serine dehydratase and tyrosine aminotransferase and (c) catalase, which has an intermediate half-life of 2.5 days for the protein portion. All the enzymes were stable in vitro at neutral and alkaline pH values. However, at acidic pH values (pH 4): the long-lived enzymes (a) were stable; the short-lived enzymes (b) were completely inactivated with one exception; and catalase was partially inactivated. Tyrosine aminotransferase was the exception in that it is a short-lived enzyme in vivo but stable under all conditions tested in vitro. The finding that long-lived enzymes are stable in an acid milieu and short-lived enzymes are generally unstable was only observed if certain ligands (NAD+, pyridoxal 5′-phosphate, Mn2+, amino acids) were added to the iv vitro systems. Lysosomal extracts did not accelerate the rate of inactivation of any cytosol enzyme in acidic solutions. These results indicate that if degradation of intracellular enzymes occurs in lysosomes, acid inactivation and denaturation of enzymes may be the initial event in determining the functional half-lives of the enzymes in vivo.  相似文献   

19.
Isolated adult bovine oligodendrocytes maintained in vitro for 10 days were treated for 1 day with 50 micrograms/ml of GM3 ganglioside (NeuNac alpha 2-3Gal beta 1-4Glc beta 1-1'ceramide) in serum-free culture medium. The treated oligodendrocytes had significantly longer processes with more branching than control cells in the same medium without GM3. The treatment also stimulated the release of a series of 22-100-kDa, [3H]glucosamine-labeled glycoproteins into the culture medium. Treatment of oligodendrocytes maintained in vitro for 50 days with GM3 for 1 day resulted in a thickening of the processes and the appearance of many fine branches on existing processes as well as a similar stimulation of glycoprotein release into the medium.  相似文献   

20.
We measured the activity of several acid hydrolases in oligodendrocyte and mixed glial (predominantly astrocytic) cell cultures prepared from neonatal rat cerebra. When compared with the mixed glial cultures, the cultured oligodendrocytes exhibited higher levels for all the hydrolases when activities were normalized to protein content. When enzymic activities were examined as a function of DNA content, oligodendrocytic -l-fucosidase, -d-glucuronidase, arylsulfatase, and N-acetyl--d-glucosaminidase were higher than in mixed glial cultures, whereas the activities of -d-glucosidase, -d-galactosidase and acid phosphatase were not elevated. These differences could not be accounted for by the fetal bovine serum present in the culture medium. The enrichment in acid hydrolase specific activities in the oligodendrocytes may be associated with a rapid turnover of at least some of the extensive myelin-like membranes formed by these cultured cells. Alternatively, the enrichment of acid hydrolase activity in the oligodendrocytes may be associated with intracellular vesicles of lysosomal origin which may play a role in myelin-like membrane assembly. Exactly which of the above two processes, or possible combinations thereof, is responsible for the present finding is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号