首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the acquisition and analysis of spectrally resolved photobleaching data from a model system designed to exhibit FRET. Spectrally resolved photobleaching can be used to determine the presence of FRET in these systems and to investigate multi-step mechanisms of energy transfer. The model system was a previously described set of fluorescent beads consisting of a system of six fluorophores. In standard photobleaching experiments to determine FRET, bleaching of an acceptor molecule resulting in recovery of donor intensity or changes in photobleaching kinetics are used as indicators of FRET. Here, we use the Bateman equations to model growth and decay in a photobleaching experiment. Linked donor-acceptor growth and decay is used as an indicator of FRET. The apparatus required is relatively simple when compared to lifetime imaging systems. Several data analysis strategies, rigorous model building, global fitting procedures, and error analysis are presented. Using these procedures a five-step sequential mechanism of energy transfer was selected for these beads.  相似文献   

2.
Investigation of protein-protein associations is important in understanding structure and function relationships in living cells. Using Förster-type resonance energy transfer between donor and acceptor labeled monoclonal antibodies we can assess the cell surface topology of membrane proteins against which the antibodies were raised. In our current work we elaborated a quantitative image microscopic technique based on the measurement of fluorescence intensities to calculate the energy transfer efficiency on a pixel-by-pixel basis. We made use of the broad excitation and emission spectrum of cellular autofluorescence for background correction of images. In addition to the reference autofluorescence images (UV background) we recorded three fluorescent images (donor, acceptor and energy transfer signal) of donor-acceptor double labeled samples, and corrected for spectral spillage of the directly excited donor and acceptor fluorescence into the energy transfer image. After careful image registration we were able to calculate the energy transfer efficiency on a pixel-by-pixel basis. In this paper, we also present a critical comparison between results obtained with this method and other approaches (photobleaching and flow cytometric energy transfer measurements).  相似文献   

3.
The existence of dimers and higher oligomers of G-protein-coupled receptors (GPCRs) has been frequently reported using strategies based on coimmunoprecipitation or Western blot assays. These methods rely on highly artificial systems with overexpressed receptors, resulting in conflicting observations on the question of whether GPCR dimers are preformed or are formed in response to agonist treatment. Fluorescence resonance energy transfer (FRET) microscopy is a superior and less perturbing technique which can be performed on selected cell regions, e.g., plasma membrane of intact cells with a sensitivity high enough to allow study under physiological levels of receptor expression. Here we describe the application of photobleaching (pb) FRET microscopy for investigating ligand-dependent oligomerization of somatostatin receptors. Procedures for the introduction of suitable donor-acceptor fluorophores in a given GPCR are described. The competitive nature of FRET and photobleaching is exploited to enable the indirect measurement of FRET via its effect on donor photobleaching lifetimes on a pixel-by-pixel basis. The method allows enhanced resolution between 10 and 100A and represents a sensitive and specific biophysical tool for characterizing the assembly and regulation of GPCR oligomers on the cell surface.  相似文献   

4.
Nuclear export of intron-containing human immunodeficiency virus type 1 RNA is mediated by the viral Rev protein. Rev is a nucleocytoplasmic transport protein that directly binds to its cis-acting Rev-responsive element RNA. Rev function depends on its ability to multimerize. The in vivo dynamics and the subcellular dependence of this process are still largely unexplored. To visualize and quantitatively analyze the mechanism of Rev multimeric assembly in live cells, we used high resolution in vivo fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching. By using two different dynamic FRET approaches (acceptor photobleaching and donor bleaching time measurements), we observed a strong Rev-Rev interaction in the nucleoli of living cells. Most interestingly, we could also detect Rev multimerization in the cytoplasm; however, FRET efficiency in the cytoplasm was significantly lower than in the nucleolus. By using fluorescence recovery after photobleaching, we investigated the mobility of Rev within the nucleolus. Mathematical modeling of the fluorescence recovery after photobleaching recoveries enabled us to extract relative association and dissociation constants and the diffusion coefficient of Rev in the nucleolus. Our results show that Rev multimerizes in the nucleolus of living cells, suggesting an important role of the nucleolus in nucleocytoplasmic transport.  相似文献   

5.
Color variants of green fluorescent protein (GFP) are increasingly used for multicolor imaging, fluorescence resonance energy transfer (FRET), and fluorescence recovery after photobleaching (FRAP). Here we show that experimental settings commonly used in these imaging experiments may induce an as yet uncharacterized reversible photobleaching of fluorescent proteins, which is more pronounced at acidic pH. Whereas the reversible photobleaching spectrum of eCFP corresponds to its absorption spectrum, reversible photobleaching spectra of yellow variants resemble absorption spectra of their protonated states. Fluorescence intensities recover spontaneously with time constants of 25-58 s. The recovery of eCFP can be further accelerated by illumination. The resulting steady-state fluorescence reflects a variable equilibrium between reversible photobleaching, spontaneous recovery, and light-induced recovery. These processes can cause significant artifacts in commonly applied imaging techniques, photobleach-based FRET determinations, and FRAP assays.  相似文献   

6.
The interaction of the cell surface proteins plays a key role in the process of transmembrane signaling. Receptor clustering and changes in their conformation are often essential factors in the final outcome of ligand receptor interactions. Fluorescence resonance energy transfer (FRET) is an excellent tool for determining distance relationships and supramolecular organization of cell surface molecules. This paper reviews the theoretical background of fluorescence resonance energy transfer, its flow cytometric and microscopic applications (including the intensity based and photobleaching versions), and provides a critical evaluation of the methods as well. In order to illustrate the applicability of the method, we summarize a few biological results: clustering of lectin receptors, cell surface distribution of hematopoietic cluster of differentiation (CD) molecules, and that of the receptor tyrosine kinases, conformational changes of Major Histocompatibility Complex (MHC) I molecules upon membrane potential change and ligand binding.  相似文献   

7.
BACKGROUND: Fluorescence imaging spectroscopy is a powerful but under-utilized tool. This article gives perspective on the use of imaging spectroscopy, and provides two examples of imaging spectroscopy done with a prism-based system. The intent is to give insight into the power of imaging spectroscopy when used in combination with other imaging techniques. In particular, studies of intact coral photobleaching and beads designed to show energy transfer are reported. In the bead study, spectroscopic lifetime imaging was performed at each photobleaching step. RESULTS: Spectroscopic photobleaching of the hard coral, Montastrea annularis, revealed two spectral regions. A region in the red portion of the spectrum bleached rapidly while progressively increasing fluorescence was observed over a wide portion of the spectrum. This behavior is consistent with current theories for the role of fluorescent proteins in corals.Following a photobleaching study of beads designed to exhibit energy transfer with imaging spectroscopic fluorescence lifetime imaging microscopy (ISFLIM) allowed unambiguous assignment of fluorescence resonance energy transfer (FRET). The data in this experiment indicated that most of the commonly used markers of FRET would have been inconclusive. The ability of the ISFLIM to look at all regions of the spectrum, particularly the acceptor region, allowed FRET to be assigned. CONCLUSIONS: Fluorescence imaging spectroscopy is a rapidly advancing technology, uniquely suited to the flexible detection of dyes over a wide range of wavelengths.  相似文献   

8.
Fluorescent resonance energy transfer (FRET) imaging techniques can be used to visualize protein-protein interactions in real-time with subcellular resolution. Imaging of sensitized fluorescence of the acceptor, elicited during excitation of the donor, is becoming the most popular method for live FRET (3-cube imaging) because it is fast, nondestructive, and applicable to existing widefield or confocal microscopes. Most sensitized emission-based FRET indices respond nonlinearly to changes in the degree of molecular interaction and depend on the optical parameters of the imaging system. This makes it difficult to evaluate and compare FRET imaging data between laboratories. Furthermore, photobleaching poses a problem for FRET imaging in timelapse experiments and three-dimensional reconstructions. We present a 3-cube FRET imaging method, E-FRET, which overcomes both of these obstacles. E-FRET bridges the gap between the donor recovery after acceptor photobleaching technique (which allows absolute measurements of FRET efficiency, E, but is not suitable for living cells), and the sensitized-emission FRET indices (which reflect FRET in living cells but lack the quantitation and clarity of E). With E-FRET, we visualize FRET in terms of true FRET efficiency images (E), which correlate linearly with the degree of donor interaction. We have defined procedures to incorporate photobleaching correction into E-FRET imaging. We demonstrate the benefits of E-FRET with photobleaching correction for timelapse and three-dimensional imaging of protein-protein interactions in the immunological synapse in living T-cells.  相似文献   

9.
《The Journal of cell biology》1995,129(6):1543-1558
The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance energy transfer: donor photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence lifetime imaging microscopy (FLIM). Fluorescein-(donor) and rhodamine-(acceptor) labeled EGF were bound to the cells and the extent of oligomerization was monitored by the spatially resolved FRET efficiency as a function of the donor/acceptor ratio and treatment conditions. An average FRET efficiency of 5% was determined after a low temperature (4 degrees C) incubation with the fluorescent EGF analogs for 40 min. A subsequent elevation of the temperature for 5 min caused a substantial increase of the average FRET efficiency to 14% at 20 degrees C and 31% at 37 degrees C. In the context of a two-state (monomer/dimer) model for the EGFR, these FRET efficiencies were consistent with minimal average receptor dimerizations of 13, 36, and 69% at 4, 20, and 37 degrees C, respectively. A431 cells were pretreated with the monoclonal antibody mAb 2E9 that specifically blocks EGF binding to the predominant population of low affinity EGFR (15). The average FRET efficiency increased dramatically to 28% at 4 degrees C, indicative of a minimal receptor dimerization of 65% for the subpopulation of high affinity receptors. These results are in accordance with prior studies indicating that binding of EGF leads to a fast and temperature- dependent microclustering of EGFR, but suggest in addition that the high affinity functional subclass of receptors on quiescent A431 cells are present in a predimerized or oligomerized state. We propose that the transmission of the external ligand-binding signal to the cytoplasmic domain is effected by a concerted relative rotational rearrangement of the monomeric units comprising the dimeric receptor, thereby potentiating a mutual activation of the tyrosine kinase domains.  相似文献   

10.
The serotonin transporter is a member of the monoamine transporter family that also includes transporters of dopamine and norepinephrine. We have used sensitized acceptor emission fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) to study the oligomerization of SERT in HEK-MSR-239 cells, RN46A cells and in cultured hippocampal neurons. We were able to show identical FRET efficiencies in cell lines as well as in primary cultured hippocampal neurons, demonstrating that the oligomerization is cell type independent. The results obtained with both FRET approaches are very similar and furthermore, in agreement with previous results obtained by donor bleaching FRET microscopy.  相似文献   

11.
We report a highly specific fluorescence lifetime imaging microscopy (FLIM) method for monitoring epidermal growth factor receptor (EGFR) phosphorylation in cells based on fluorescence resonance energy transfer (FRET). EGFR phosphorylation was monitored using a green fluorescent protein (GFP)-tagged EGFR and Cy3-conjugated anti-phosphotyrosine antibodies. In this FRET-based imaging method, the information about phosphorylation is contained only in the (donor) GFP fluorescence lifetime and is independent of the antibody-derived (acceptor) fluorescence signal. A pixel-by-pixel reference lifetime of the donor GFP in the absence of FRET was acquired from the same cell after photobleaching of the acceptor. We show that this calibration, by acceptor photobleaching, works for the GFP-Cy3 donor-acceptor pair and allows the full quantitation of FRET efficiencies, and therefore the degree of exposed phosphotyrosines, at each pixel. The hallmark of EGFR stimulation is receptor dimerisation [1] [2] [3] [4] and concomitant activation of its intracellular tyrosine kinase domain [5] [6] [7]. Trans-autophosphorylation of the receptor [8] [9] on specific tyrosine residues couples the activated dimer to the intracellular signal transduction machinery as these phosphorylated residues serve as docking sites for adaptor and effector molecules containing Src homology 2 (SH2; reviewed in [10]) and phosphotyrosine-binding (PTB) [11] domains. The time-course and extent of EGFR phosphorylation are therefore important determinants of the underlying pathway and resulting cellular response. Our results strongly suggest that secondary proteins are recruited by activated receptors in endosomes, indicating that these are active compartments in signal transduction.  相似文献   

12.
Fluorescence resonance energy transfer (FRET) from a donor-labelled molecule to an acceptor-labelled molecule is a useful, proximity-based fluorescence tool to discriminate molecular states on the surface and in the interior of cells. Most microscope-based determinations of FRET yield only a single value, the interpretation of which is necessarily model-dependent. In this paper we demonstrate two new measurements of FRET heterogeneity using selective donor photobleaching in combination with synchronous donor/acceptor detection based on either (1) full kinetic analysis of donor-detected and acceptor-detected donor photobleaching or (2) a simple time-based ratiometric approach. We apply the new methods to study the cell surface distribution of concanavalin A yielding estimates of FRET and non-FRET population distributions, as well as FRET efficiencies within the FRET populations.  相似文献   

13.
The principal objective of this study was to explore protein conformational changes using fluorescence resonance energy transfer (FRET) technology. Maltose binding protein (MBP) was adopted as a target model, due to its well-characterized structure and ligand specificity. To the best of our knowledge, this is the first report to provide information regarding the biological distance between the two lobes of MBP upon maltose binding. For the FRET pair, ECFP and EYFP were used as the donor and the acceptor, and were linked genetically to the C-terminal and N-terminal regions of MBP (ECFP:MBP:EYFP), respectively. After the FRET reaction, maltose-treated MBP was shown to exhibit a considerable energy transfer (FRET efficiency (E) = ∼0.11, Distance (D) = ∼6.93 nm) at the ensemble level, which was regarded as reflective of the increase in donor quenching and the upshift in acceptor emission intensity, thereby suggesting that the donor and the acceptor had been brought close together as the result of structural alterations in MBP. However, upon glucose treatment, no FRET phenomenon was detected, thereby implying the specificity of interaction between MBP and maltose. The in vitro FRET results were also confirmed via the acceptor photobleaching method. Therefore, our data showed that maltose-stimulated conformational changes of MBP could be measured by FRET, thereby providing biological information, including the FRET efficiency and the intramolecular distance.  相似文献   

14.
We demonstrate theoretically and experimentally the quantification of Förster resonance energy transfer (FRET) by direct and systematic saturation of the excited state of acceptor molecules. This version of acceptor depletion methods for FRET estimation, denoted as “satFRET” is reversible and suitable for time-resolved measurements. The technique was investigated theoretically using the steady-state solution of the differential equation system of donor and acceptor molecular states. The influence of acceptor photobleaching during measurement was included in the model. Experimental verification was achieved with the FRET-pair Alexa 546- Alexa 633 loaded on particles in different stoichiometries and measured in a confocal microscope. Estimates of energy transfer efficiency by excited state saturation were compared to those obtained by measurements of sensitised emission and acceptor photobleaching. The results lead to a protocol that allows time-resolved FRET measurements of fixed and living cells on a conventional confocal microscope. This procedure was applied to fixed Chinese hamster ovary cells containing a cyan fluorescent protein and yellow fluorescent protein pair. The time resolution of the technique was demonstrated in a live T cell activation assay comparing the FRET efficiencies measured using a genetically encoded green and red fluorescent protein biosensor for GTP/GDP turnover to those measured by acceptor photobleaching of fixed cells.  相似文献   

15.
Fluorescence resonance energy transfer (FRET) microscopy is a powerful tool for imaging the interactions between fluorescently tagged proteins in two-dimensions. For FRET microscopy to reach its full potential, it must be able to image more than one pair of interacting molecules and image degradation from out-of-focus light must be reduced. Here we extend our previous work on the application of maximum likelihood methods to the 3-dimensional reconstruction of 3-way FRET interactions within cells. We validated the new method (3D-3Way FRET) by simulation and fluorescent protein test constructs expressed in cells. In addition, we improved the computational methods to create a 2-log reduction in computation time over our previous method (3DFSR). We applied 3D-3Way FRET to image the 3D subcellular distributions of HIV Gag assembly. Gag fused to three different FPs (CFP, YFP, and RFP), assembled into viral-like particles and created punctate FRET signals that become visible on the cell surface when 3D-3Way FRET was applied to the data. Control experiments in which YFP-Gag, RFP-Gag and free CFP were expressed, demonstrated localized FRET between YFP and RFP at sites of viral assembly that were not associated with CFP. 3D-3Way FRET provides the first approach for quantifying multiple FRET interactions while improving the 3D resolution of FRET microscopy data without introducing bias into the reconstructed estimates. This method should allow improvement of widefield, confocal and superresolution FRET microscopy data.  相似文献   

16.
The fate of fluorescently labeled pre-nsL-TP (Cy3-pre-nsL-TP) microinjected into BALB/c 3T3 fibroblasts was investigated by confocal laser scanning microscopy. The protein exhibited a distinct punctate fluorescence pattern and colocalized to a high degree with the immunofluorescence pattern for the peroxisomal enzyme acyl-CoA oxidase. Proteolytic removal of the C-terminal leucine of the putative peroxisomal targeting sequence (AKL) resulted in a diffuse cytosolic fluorescence. These results indicate that microinjected Cy3-pre-nsL-TP is targeted to peroxisomes. The association of nsL-TP with peroxisomal enzymes was investigated in cells by measuring fluorescence resonance energy transfer (FRET) between the microinjected Cy3-pre-nsL-TP and Cy5-labeled antibodies against the peroxisomal enzymes acyl-CoA oxidase, 3-ketoacyl-CoA thiolase, bifunctional enzyme, PMP70 and catalase. The technique of photobleaching digital imaging microscopy (pbDIM), used to quantitate the FRET efficiency on a pixel-by-pixel basis, revealed a specific association of nsL-TP with acyl-CoA oxidase, 3-ketoacyl-CoA thiolase and bifunctional enzyme in the peroxisomes. These observations were corroborated by subjecting a peroxisomal matrix protein fraction to affinity chromatography on Sepharose-immobilized pre-nsL-TP. Acyl-CoA oxidase was retained. These studies provide strong evidence for a role of nsL-TP in the regulation of peroxisomal fatty acid beta-oxidation, e.g. by facilitating the presentation of substrates and/or stabilization of the enzymes.  相似文献   

17.
BACKGROUND: This study validates the use of phycoerythrin (PE) and allophycocyanin (APC) for fluorescence energy transfer (FRET) analyzed by flow cytometry. METHODS: FRET was detected when a pair of antibody conjugates directed against two noncompetitive epitopes on the same CD8alpha chain was used. FRET was also detected between antibody conjugate pairs specific for the two chains of the heterodimeric alpha (4)beta(1) integrin. Similarly, the association of T-cell receptor (TCR) with a soluble antigen ligand was detected by FRET when anti-TCR antibody and MHC class I/peptide complexes () were used. RESULTS: FRET efficiency was always less than 10%, probably because of steric effects associated with the size and structure of PE and APC. Some suggestions are given to take into account this and other effects (e.g., donor and acceptor concentrations) for a better interpretation of FRET results obtained with this pair of fluorochromes. CONCLUSIONS: We conclude that FRET assays can be carried out easily with commercially available antibodies and flow cytometers to study arrays of multimolecular complexes.  相似文献   

18.
We present an extensive investigation of the accuracy and precision of temporal image correlation spectroscopy (TICS). Using simulations of laser scanning microscopy image time series, we investigate the effect of spatiotemporal sampling, particle density, noise, sampling frequency, and photobleaching of fluorophores on the recovery of transport coefficients and number densities by TICS. We show that the recovery of transport coefficients is usually limited by spatial sampling, while the measurement of accurate number densities is restricted by background noise in an image series. We also demonstrate that photobleaching of the fluorophore causes a consistent overestimation of diffusion coefficients and flow rates, and a severe underestimation of number densities. We derive a bleaching correction equation that removes both of these biases when used to fit temporal autocorrelation functions, without increasing the number of fit parameters. Finally, we image the basal membrane of a CHO cell with EGFP/alpha-actinin, using two-photon microscopy, and analyze a subregion of this series using TICS and apply the bleaching correction. We show that the photobleaching correction can be determined simply by using the average image intensities from the time series, and we use the simulations to provide good estimates of the accuracy and precision of the number density and transport coefficients measured with TICS.  相似文献   

19.
G-protein-coupled receptors (GPCRs) represent the largest and most diverse family of cell surface receptors. Several GPCRs have been documented to dimerize with resulting changes in pharmacology and signaling. We have previously reported, by means of photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence correlation spectroscopic analysis in live cells, that human somatostatin receptor (hSSTR) 5 could both homodimerize and heterodimerize with hSSTR1 in the presence of the agonist SST-14. By contrast, hSSTR1 remained monomeric when expressed alone regardless of agonist exposure in live cells. However, the effect of the agonist on other hSSTR members remains unknown. Using pbFRET microscopy and Western blot, we provide evidence for agonist-dependent dissociation of self-associated hSSTR2 stably expressed in CHO-K1 and HEK-293 cells. Furthermore, the dissociation of the hSSTR2 dimer occurred in a concentration-dependent manner. Moreover, blocking receptor dissociation using a cross-linker agent perturbed receptor trafficking. Taking these data together, we suggest that the process of GPCR dimerization may operate differently, even among members of the same family, and that receptor dissociation as well as dimerization may be important steps for receptor dynamics.  相似文献   

20.
Advances in molecular biology provide various methods to define the structure and function of the individual proteins that form the component parts of subcellular structures. The ability to see the dynamic behavior of a specific protein inside the living cell became possible through the application of advanced fluorescence resonance energy transfer (FRET) microscope techniques. The fluorophore molecule used for FRET imaging has a characteristic absorption and emission spectrum that should be considered for characterizing the FRET signal. In this article we describe the system development for the image acquisition for one- and two-photon excitation FRET microscopy. We also describe the precision FRET (PFRET) data analysis algorithm that we developed to remove spectral bleed-through and variation in the fluorophore expression level (or concentration) for the donor and acceptor molecules. The acquired images have been processed using a PFRET algorithm to calculate the energy transfer efficiency and the distance between donor and acceptor molecules. We implemented the software correction to study the organization of the apical endosome in epithelial polarized MDCK cells and dimerization of the CAATT/enhancer binding protein alpha (C/EBPalpha). For these proteins, the results revealed that the extent of correction affects the conventionally calculated energy transfer efficiency (E) and the distance (r) between donor and acceptor molecules by 38 and 9%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号