首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine deaminase (ADA), an enzyme of purine metabolism, is highly expressed in four tissues of the mouse: the maternal decidua, the fetal placenta, the keratinizing epithelium of the upper alimentary tract (tongue, esophagus, and forestomach), and the absorptive epithelium of the proximal small intestine. ADA is produced at relatively low levels in all other tissues. To identify genetic elements that direct appropriate prenatal and postnatal expression of the ADA gene, a segment of DNA including the ADA promoter and 6.4 kilobases of the adjacent 5' flanking region was tested for the ability to direct the expression of a reporter gene in transgenic mice. In seven lines of transgenic mice studied, this construct directed high levels of reporter gene expression in the placenta and forestomach and exhibited correct developmental regulation in these tissues. This construct failed to direct significant reporter gene expression to either the maternal decidua or the proximal small intestine. Thus, different gene regulatory elements are required to target high expression to the four tissues characterized by high levels of ADA.  相似文献   

2.
3.
4.
5.
6.
7.
The immunophilin homolog FKBP8 has been implicated in the regulation of apoptosis. Here we show that the 38-kDa form of FKBP8 (FKBP38) derives from a truncated ORF. The extended FKBP8 ORFs are 46 and 44 kDa in mouse and 45 kDa in human. Although the genomic organization of mouse and human FKBP8 is evolutionarily conserved, additional first exons are encoded by the murine locus. A 4.4-kb murine Fkbp8 gene fragment, containing a GC-rich potential promoter, directed expression of a LacZ reporter gene to forebrain neurons in transgenic mice. Expression of the transgene was observed in CA1 pyramidal neurons of the hippocampus in transgenic mice from three lines. One transgenic founder mouse exhibited widespread forebrain expression of the LacZ transgene that resembles the pattern for the endogenous Fkbp8 gene. Thus promoter/enhancer elements for forebrain expression are located around the first exons of the mouse Fkbp8 gene.  相似文献   

8.
9.
10.
11.
12.
Although the promoter/enhancer of the IL-2 gene mediates inducible reporter gene expression in vitro, it cannot drive consistent expression in transgenic mice. The location and existence of any regulatory elements that could open the IL-2 locus in vivo have remained unknown, preventing analysis of IL-2 regulation in developmental contexts. In this study, we report the identification of such a regulatory region, marked by novel DNase-hypersensitive sites upstream of the murine IL-2 promoter in unstimulated and stimulated T cells. Inclusion of most of these sites in an 8.4-kb IL-2 promoter green fluorescent protein transgene gives locus control region-like activity. Expression is efficient, tissue specific, and position independent. This transgene is expressed not only in peripheral T cells, but also in immature thymocytes and thymocytes undergoing positive selection, in agreement with endogenous IL-2 expression. In contrast, a 2-kb promoter green fluorescent protein transgene, lacking the new hypersensitive sites, is expressed in only a few founder lines, and expression is dysregulated in CD8(+) cells. Thus, the 6.4 kb of additional upstream IL-2 sequence contains regulatory elements that provide integration site independence and differential regulation of transgene expression in CD8 vs CD4 cells.  相似文献   

13.
14.
15.
16.
Mice with a loss of function of prx1, a paired-related homeobox gene formerly called Mhox, showed craniofacial defects, limb shortening, and incompletely penetrant spina bifida. To investigate the mechanisms that regulate prx1 expression, we analyzed a 2.4-kb prx1 genomic flanking region in transgenic mice. This region of the prx1 gene contains an enhancer element that directs expression of a LacZ reporter gene in limb bud mesenchyme and a subset of craniofacial mesenchyme. Deletional analysis in transgenic founders identified a necessary 530-bp core element. Comparison of this core element with human Prx1 sequence showed two highly conserved cassettes that also contained a prx recognition element. Moreover, transgene expression was diminished in posterior handplate of prx1; prx2 double mutant mice. Our data reveal that the prx1 limb enhancer is proximally located within the prx1 gene and suggest that prx1 may have an autoregulatory function in limb mesenchyme.  相似文献   

17.
18.
19.
Abstract: Previous studies demonstrated that 9 kb of the rat tyrosine hydroxylase (TH) 5' flanking sequence directed appropriate spatiotemporal expression of a lacZ reporter gene to catecholaminergic cells in the CNS of transgenic mice. In the present study, specificity of transgene expression was further extended to demonstrate cell type-specific functional regulation of lacZ expression using manipulations known to alter endogenous TH expression. Alterations in lacZ reporter expression should parallel changes in endogenous TH levels if the DNA elements mediating these functional changes of TH expression in vivo reside within the 9 kb of the TH promoter region. Naris closure induced an activity-dependent decrease of TH expression in dopaminergic periglomerular cells in the olfactory bulb that was paralleled by down-regulation of lacZ expression in the transgenic mice. Densitometry and image analysis were used to quantify lacZ expression following acute reserpine administration (5 mg/kg, s.c.), which up-regulates endogenous TH. At 48 h postinjection, analysis of OD values indicated a significant increase of X-gal staining in the locus coeruleus and ventral tegmental area but not in the substantia nigra or olfactory bulb of reserpine-treated transgenic animals. These data showed that the 9-kb sequence also mediates cell type-specific transsynaptic regulation of reporter gene expression. Analysis of this transgenic animal offers a useful model system to study in vivo regulation of TH gene expression.  相似文献   

20.
Comparative analysis of the human and mouse genomic sequences downstream of the apolipoprotein E gene (APOE) revealed a highly conserved element with previously undefined function. In reporter gene transfection studies, this element which is located approximately 42 kb distal to APOE was found to have silencer activity in a subset of cell lines examined. Analysis of transgenic mice containing a fusion construct linking this distal 631 bp conserved element to a reporter gene comprised of the human APOE gene with its proximal promoter resulted in robust brain expression of the transgenic human apoE mRNA in three independent transgenic lines, supporting the identification of a novel brain controlling region (BCR). Further studies using immunohistochemistry revealed widespread human apoE localization throughout the brains of the BCR-apoE transgenic mice with prominent expression in the cortex and diencephalon. In addition, double-label immunofluorescence performed on brain sections and cultures of primary cortical cells localized human apoE protein to cortical neurons and microglia. These studies demonstrate that comparative sequence analysis is a successful strategy to predict candidate regulatory regions in vivo, although they do not imply that this element controls apoE expression physiologically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号