首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown, using phosphorothioate substitutions at splice site, that both transesterification steps of group II intron self-splicing proceed, by stereochemical inversion, with an Sp but not an Rp phosphorothioate. Under alternative reaction conditions or with various intron fragments, group II introns can splice following hydrolysis at the 5' splice site and can also hydrolyze the bond between spliced exons (the spliced-exon reopening reaction). In this study, we have determined the stereochemical specificities of all of the major model hydrolytic reactions carried out by the aI5 gamma intron from Saccharomyces cerevisiae mitochondria. For all substrates containing exon 1 and most of the intron, the stereospecificity of hydrolysis is the same as for the step 1 transesterification reaction. In contrast, the spliced-exon reopening reaction proceeds with an Rp but not an Sp phosphorothioate at the scissile bond, as does true reverse splicing. Thus, by stereochemistry, this reaction appears to be related to the reverse of step 2 of self-splicing. Finally, a substrate RNA that contains the first exon and nine nucleotides of the intron, when reacted with the intron ribozyme, releases the first exon regardless of the configuration of the phosphorothioate at the 5' splice site, suggesting that this substrate can be cleaved by either the step 1 or the step 2 reaction site. Our findings clarify the relationships of these model reactions to the transesterification reactions of the intact self-splicing system and permit new studies to be interpreted more rigorously.  相似文献   

2.
Small RNAs capable of self-cleavage and ligation might have been the precursors for the much more complex self-splicing group I and II introns in an early RNA world. Here, we demonstrate the activity of engineered hairpin ribozyme variants, which as self-splicing introns are removed from their parent RNA. In the process, two cleavage reactions are supported at the two intron-exon junctions, followed by ligation of the two generated exon fragments. As a result, the hairpin ribozyme, here acting as the self-splicing intron, is cut out. Two self-splicing hairpin ribozyme variants were investigated, one designed by hand, the other by a computer-aided approach. Both variants perform self-splicing, generating a cut-out intron and ligated exons.  相似文献   

3.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

4.
The fifth intron in the gene for cytochrome c oxidase subunit I in yeast mitochondrial DNA is of the group II type and is capable of self-splicing in vitro. The reaction results in lariat formation, concomitant with exon-exon ligation and does not require a guanosine nucleotide for its initiation. It is generally assumed, but not formally proven, that the first step in splicing is a nucleophilic attack of the 2'-hydroxyl of the branchpoint nucleotide (A) on the 5'-exon-intron junction. To investigate the role of intron sequences in recognition of the 5'-splice junction and the ensuing event of cleavage and lariat formation, mutations have been introduced at and around the branchsite. Results obtained show that although branchpoint attack and subsequent lariat formation are strongly preferred events under conditions normally used for self-splicing, addition of a single T residue at intron position 856, a mutation which brings the branchpoint adenosine into a basepair, leads to a conditionally active intron, which at high ionic strength catalyses exon-exon ligation in the absence of lariat formation. Comparable behaviour is also observed with the branchpoint A deletion mutant. The implications of these findings for the mechanism of self-splicing of group II introns are discussed.  相似文献   

5.
The stereochemical course of the first step of pre-mRNA splicing.   总被引:4,自引:0,他引:4       下载免费PDF全文
We have determined the effects on splicing of sulfur substitution of the non-bridging oxygens in the phosphodiester bond at the 5' splice site of a pre-mRNA intron. Pre-mRNAs containing stereochemically pure Rp and Sp phosphorothioate isomers were produced by ligation of a chemically synthesized modified RNA oligonucleotide to enzymatically synthesized RAs. When these modified pre-mRNA substrates were tested for in vitro splicing activity in a HeLa cell nuclear extract system, the RNA with the Rp diastereomeric phosphorothioate was not spliced while the Sp diastereomeric RNA spliced readily. The sulfur-containing branched trinucleotide was purified from the splicing reaction of the Sp RNA and analyzed by cleavage with a stereospecific nuclease. The results showed that the Sp phosphorothioate was inverted during the splicing reaction to the Rp configuration; a finding previously obtained for a Group I self-splicing RNA. This inversion of configuration is consistent with a transesterification mechanism for pre-mRNA splicing. The lack of splicing of the Rp modified RNA also suggests that the pro-Rp oxygen at the 5' splice site is involved in a critical chemical contact in the splicing mechanism. Additionally, we have found that the HeLa cell RNA debranching enzyme is inactive on branches containing an Rp phosphorothioate.  相似文献   

6.
Adamidi C  Fedorova O  Pyle AM 《Biochemistry》2003,42(12):3409-3418
Group II intron RNAs fold into catalytically active structures that catalyze their own self-splicing and subsequent transposition into DNA. Because of their remarkable enzymatic properties, it has been of interest to find new group II introns with novel properties. Here we report the cloning, sequencing, and mechanistic characterization of a new group II intron from the bacterium Azotobacter vinelandii (the AV intron). Although it bears the characteristics of the group IIB1 class, the AV intron is unusually G-C rich, and it has unusual insertion sequences and a minimal dependence on the EBS2-IBS2 tertiary interaction. The AV intron is the first bacterial intron that has been found to reside in a housekeeping gene which, in this case, encodes a heat-shock protein (hsp60). Consistent with a potential role in heat-shock regulation, kinetic analysis reveals that AV intron self-splicing is activated only at elevated temperatures. This suggests a novel pathway for the regulation of heat shock in prokaryotes and provides a first example of a thermally tolerant group II intron RNA.  相似文献   

7.
Group II intron domain 5 facilitates a trans-splicing reaction.   总被引:34,自引:3,他引:31       下载免费PDF全文
A self-splicing group II intron of yeast mitochondrial DNA (aI5g) was divided within intron domain 4 to yield two RNAs that trans-spliced in vitro with associated trans-branching of excised intron fragments. Reformation of the domain 4 secondary structure was not necessary for the trans reaction, since domain 4 sequences were shown to be dispensable. Instead, the trans reaction depended on a previously unpredicted interaction between intron domain 5, the most highly conserved region of group II introns, and another region of the RNA. Domain 5 was shown to be essential for cleavage at the 5' splice site. It stimulated that cleavage when supplied as a trans-acting RNA containing only 42 nucleotides of intron sequence. The relevance of our findings to in vivo trans-splicing mechanisms is discussed.  相似文献   

8.
9.
The RNA-catalysed self-splicing reaction of group II intron RNA is assumed to proceed by two consecutive transesterification steps, accompanied by lariat formation. This is effectively analogous to the small nuclear ribonucleoprotein (snRNP)-mediated nuclear pre-mRNA splicing process. Upon excision from pre-RNA, a group II lariat intervening sequence (IVS) has the capacity to re-integrate into its cognate exons, reconstituting the original pre-RNA. The process of reverse self-splicing is presumed to be a true reversion of both transesterification steps used in forward splicing. To investigate the fate of the esterified phosphate groups in splicing we assayed various exon substrates (5'E-*p3'E) containing a unique 32P-labelled phosphodiester at the ligation junction. In combined studies of alternating reverse and forward splicing we have demonstrated that the labelled phosphorus atom is displaced in conjunction with the 3' exon from the ligation junction to the 3' splice site and vice versa. Neither the nature of the 3' exon sequence nor its sequence composition acts as a prominent determinant for both substrate specificity and site-specific transesterification reactions catalysed by bI1 IVS. A cytosine ribonucleotide (pCp; pCOH) or even deoxyoligonucleotides could function as an efficient substitute for the authentic 3' exon in reverse and in forward splicing. Furthermore, the 3' exon can be single monophosphate group. Upon incubation of 3' phosphorylated 5' exon substrate (5'E-*p) with lariat IVS the 3'-terminal phosphate group is transferred in reverse and forward splicing like an authentic 3' exon, but with lower efficiency. In the absence of 3' exon nucleotides, it appears that substrate specificity is provided predominantly by the base-pairing interactions of the intronic exon binding site (EBS) sequences with the intron binding site (IBS) sequences in the 5' exon. These studies substantiate the predicted transesterification pathway in forward and reverse splicing and extend the catalytic repertoire of group II IVS in that they can act as a potential and sequence-specific transferase in vitro.  相似文献   

10.
11.
The yeast mitochondrial group II intron bI1 is self-splicing in vitro. We have introduced a deletion of hairpin C1 within the structural domain 1 that abolishes catalytic activity of the intron in the normal splicing reaction in cis, but does less severely affect a reaction in trans, the reopening of ligated exons. Since exon reopening is supposed to correspond to a reverse 3' cleavage this suggests that the deletion specifically blocks the first reaction step. The intron regains its activity to self-splice in cis by intermolecular complementation with a small RNA harbouring sequences lacking in the mutant intron. These results demonstrate the feasibility to reconstitute a functionally active structure of the truncated intron by intermolecular complementation in vitro. Furthermore, the data support the hypothesis that group II introns are predecessors of nuclear pre-mRNA introns and that the small nuclear RNAs of the spliceosome arose by segregation from the original intron.  相似文献   

12.
Antibiotics act as inhibitors of various biological processes. Here we demonstrate that some tuberactinomycins, hitherto known as inhibitors of prokaryotic protein synthesis and of group I intron self-splicing, have a modulatory effect on group I intron RNAs. The linear intron, which is excised during the self-splicing process, is still an active molecule capable of performing an intramolecular transesterification resulting in a circular molecule. However, in the presence of sub-inhibitory concentrations of tuberactinomycins, the intron reacts intermolecularly leading to the formation of linear head-to-tail intron-oligomers. The antibiotic stimulates the intron to reactin transinstead ofin cis. The phage T4-derivedtdintron uses the same sites for oligomerisation as for circularisation. Gel-retardation experiments demonstrate that the intron RNA forms non-covalent complexes in the presence of the antibiotic. It might be envisaged that the role of these peptide antibiotics is to bridge RNA molecules mediating RNA – RNA interactions and thus enabling their reaction. The tuberactinomycins are further able to induce the interaction of heterologous introns. The ligation of the T4 phage-derivedtdintron with theTetrahymenarRNA intron is very efficient, resulting in molecules composed of two introns derived from different species. Thetdintron attacks theTetraymenaintron at various sites, which are located within double-stranded regions. These observations suggest that small molecules like these basic peptide antibiotics could have mediated RNA–RNA interactions in a pre-protein era.  相似文献   

13.
Excision of group II introns as circles has been described only for a few eukaryotic introns and little is known about the mechanisms involved, the relevance or consequences of the process. We report that splicing of the bacterial group II intron RmInt1 in vivo leads to the formation of both intron lariat and intron RNA circles. We determined that besides being required for the intron splicing reaction, the maturase domain of the intron-encoded protein also controls the balance between lariat and RNA intron circle production. Furthermore, comparison with in vitro self-splicing products indicates that in vivo, the intron-encoded protein appears to promote the use of a correct EBS1/IBS1 intron-exon interaction as well as cleavage at, or next to, the expected 3' splice site. These findings provide new insights on the mechanism of excision of group II introns as circles.  相似文献   

14.
15.
16.
17.
RNA containing the aI3 group I intron of the yeast mitochondrial gene encoding cytochrome oxidase subunit I shows self-splicing in vitro. The excised intron, comprising 1514 nucleotides, is partially split into an upstream portion, containing the intronic reading frame, and a downstream portion, containing the typical group I conserved sequence elements. Full-length intron RNA and intron parts occur in linear and circular form. In the transesterification reactions leading to circle formation, only the guanosine nucleotide added during splicing is removed. Reincubation of isolated, complete circular intron RNA under self-splicing conditions leads to formation of free subintronic RNA circles. Under similar conditions, purified linear intron RNA gives rise to a number of circular and linear products, one of which consists of interlocked subintronic RNA circles. These observations suggest that the intron RNA possesses a dynamic structure in which subtle alterations in folding result in the formation of RNA products with different topology.  相似文献   

18.
19.
New RNA-mediated reactions by yeast mitochondrial group I introns.   总被引:7,自引:1,他引:6       下载免费PDF全文
The group I self-splicing reaction is initiated by attack of a guanosine nucleotide at the 5' splice site of intron-containing precursor RNA. When precursor RNA containing a yeast mitochondrial group I intron is incubated in vitro under conditions of self-splicing, guanosine nucleotide attack can also occur at other positions: (i) the 3' splice site, resulting in formation of a 3' exon carrying an extra added guanosine nucleotide at its 5' end; (ii) the first phosphodiester bond in precursor RNA synthesized from the SP6 bacteriophage promoter, leading to substitution of the first 5'-guanosine by a guanosine nucleotide from the reaction mixture; (iii) the first phosphodiester bond in already excised intron RNA, resulting in exchange of the 5' terminal guanosine nucleotide for a guanosine nucleotide from the reaction mixture. An identical sequence motif (5'-GAA-3') occurs at the 3' splice site, the 5' end of SP6 precursor RNA and at the 5' end of excised intron RNA. We propose that the aberrant reactions can be explained by base-pairing of the GAA sequence to the Internal Guide Sequence. We suggest that these reactions are mediated by the same catalytic centre of the intron RNA that governs the normal splicing reactions.  相似文献   

20.
RNA splicing in the T-even bacteriophage   总被引:4,自引:0,他引:4  
F K Chu  G F Maley  F Maley 《FASEB journal》1988,2(3):216-223
Group 1 introns, first demonstrated in the nuclear large rRNA of Tetrahymena thermophila and subsequently in many yeast, fungal mitochondrial, and chloroplast precursor RNAs, are capable of intron excision and exon ligation in vitro, although this process occurs much more rapidly in vivo. The discovery and characterization of a similar intron in the T4 phage thymidylate synthase gene (td) led to the finding of additional group 1 introns in other T4 genes and in genes of the related T2 and T6 phages. Because protein factors are not required in the splicing of group 1 introns in vitro, it has been postulated that the precursor RNA can assume a critical conformation enabling it to undergo site-specific autocatalytic cleavage and ligation (self-splicing). By means of site-directed mutation, it has been shown unequivocally that several sequence elements in the Tetrahymena rRNA intron are involved in the formation of base-paired stem structures that are essential for the self-splicing process. These sequence elements have been demonstrated in other eukaryotic group 1 introns, as well as in the td intron. In this brief review we shall describe the biochemical and structural properties of the td intron in relation to other newly found phage introns. The interesting implications arising from these revelations will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号