首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
Marine mites (Halacaroidea: Acari): a geographical and ecological survey   总被引:2,自引:2,他引:0  
Halacarid mites (Acari), with almost 700 species described, inhabit marine and freshwater habitats. The majority of genera are recorded from at least two ocean basins or continents. There is no evidence of endemic genera, in either littoral faunal provinces or in deep-sea regions. Copidognathus, a genus comprising 1/4 of all species described, is found in almost all geographic regions, depths and habitats. Other genera dominate or are restricted to cold waters, to warm waters or to distinct habitats.Corresponding habitats on either side of the boreal Atlantic Ocean harbour congeneric, identical, sibling or morphologically similar species. The fauna in the western Atlantic is less diverse than that in the eastern. Amphiatlantics are restricted to certain genera. Transatlantic distribution is independent of the niche inhabited.Of the marine halacarid species recorded from the boreal western Atlantic, 41% are amphiatlantics, while only one species is recorded from both the Caribbean and the Mediterranean. The Caribbean and the Mediterranean faunas are dominated by genera in which amphiatlantics are unknown.Most of the Black Sea species of the genus Halacarellus also occur in the Baltic, North Sea or North Atlantic, whereas the Copidognathus fauna of the Black Sea is similar to that of the Mediterranean.Halacarids are thought to be an ancient taxon, with most genera probably having been present since the Mesozoic and with several species having an age of at least 50 million years. Evidence for their antiquity is found in the distributional pattern of marine and limnic genera and species, in the lack of endemic genera despite low fecundity and lack of dispersal stages, and in the fact that amphiatlantics are restricted to certain genera without relationships to the niches inhabited.  相似文献   

2.
The isopod crustaceans are diverse both morphologically and in described species numbers. Nearly 950 described species (∼9% of all isopods) live in continental waters, and possibly 1,400 species remain undescribed. The high frequency of cryptic species suggests that these figures are underestimates. Several major freshwater taxa have ancient biogeographic patterns dating from the division of the continents into Laurasia (Asellidae, Stenasellidae) and Gondwana (Phreatoicidea, Protojaniridae and Heterias). The suborder Asellota has the most described freshwater species, mostly in the families Asellidae and Stenasellidae. The suborder Phreatoicidea has the largest number of endemic genera. Other primary freshwater taxa have small numbers of described species, although more species are being discovered, especially in the southern hemisphere. The Oniscidea, although primarily terrestrial, has a small number of freshwater species. A diverse group of more derived isopods, the ‘Flabellifera’ sensu lato has regionally important species richness, such as in the Amazon River. These taxa are transitional between marine and freshwater realms and represent multiple colonisations of continental habitats. Most species of freshwater isopods species and many genera are narrow range endemics. This endemism ensures that human demand for fresh water will place these isopods at an increasing risk of extinction, as has already happened in a few documented cases. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

3.
Species richness in freshwater bony fishes depends on two main processes: the transition into and the diversification within freshwater habitats. In contrast to bony fishes, only few cartilaginous fishes, mostly stingrays (Myliobatoidei), were able to colonize fresh water. Respective transition processes have been mainly assessed from a physiological and morphological perspective, indicating that the freshwater lifestyle is strongly limited by the ability to perform osmoregulatory adaptations. However, the transition history and the effect of physiological constraints on the diversification in stingrays remain poorly understood. Herein, we estimated the geographic pathways of freshwater colonization and inferred the mode of habitat transitions. Further, we assessed habitat‐related speciation rates in a time‐calibrated phylogenetic framework to understand factors driving the transition of stingrays into and the diversification within fresh water. Using South American and Southeast Asian freshwater taxa as model organisms, we found one independent freshwater colonization event by stingrays in South America and at least three in Southeast Asia. We revealed that vicariant processes most likely caused freshwater transition during the time of major marine incursions. The habitat transition rates indicate that brackish water species switch preferably back into marine than forth into freshwater habitats. Moreover, our results showed significantly lower diversification rates in brackish water lineages, whereas freshwater and marine lineages exhibit similar rates. Thus, brackish water habitats may have functioned as evolutionary bottlenecks for the colonization of fresh water by stingrays, probably because of the higher variability of environmental conditions in brackish water.  相似文献   

4.
Gobies and their relatives are significant components of nearshore marine, estuarine, and freshwater fish faunas in both tropical and temperate habitats worldwide. They are remarkable for their ability to adapt to and diversify in a wide range of environments. Among gobiiform clades, species diversities vary widely, ranging from two species in Kurtidae to more than 1,000 species in Gobiidae. There is also great variation in head and body shape and in environmental preferences (fresh, brackish, or marine habitats). In this study, I used a time-calibrated molecular phylogeny, coupled with morphometric and comparative analyses, to examine evolutionary rates of both speciation and morphological diversification among gobiiform lineages. Projection of the phylogeny onto a shape-derived morphospace shows that Gobioidei is morphometrically distinct from its sister taxon Apogonoidei, but that families within Gobioidei overlap in morphospace. Analysis of species diversification rates indicates that three rate shifts have occurred over the evolutionary history of Gobiiformes. Relative to the other lineages, Kurtidae has exhibited a slowdown in speciation, whereas both Apogonidae and Gobiidae?+?Gobionellidae have experienced an increase in diversification. Comparative analyses show that in Apogonidae and Gobiidae?+?Gobionellidae, increased speciation is correlated with diminished rates of morphological diversification, differently manifested in either clade and among the various sublineages. The elevation in speciation rates and diminishment in rates of morphological change in both Apogonidae and the clade Gobiidae?+?Gobionellidae are correlated with shifts to oceanic habitats from freshwater. This pattern is the complement to that seen across the global radiation of acanthomorph fishes in which a decrease in species diversification is associated with an increase in morphological disparity.  相似文献   

5.
The thalassiosiroid centric diatoms are distinguished by at least one synapomorphy, the strutted process or fultoportula. Variously classified as a family (Thalassiosiraceae) or an order (Thalassiosirales) among centric diatoms, it is generally conceded that the group of several hundred fossil and living species is monophyletic as a whole. There are two ecological groups of thalassiosiroids, marine and freshwater. It has been hypothesized, based on an ecletic, non-rigorous, evolutionary taxonomy perspective that both the marine and freshwater ecological groups are also monophyletic, but this hypothesis has never been tested in a rigorous framework. Likewise, the freshwater thalassiosiroid species have been grouped into several genera and subgenera using an evolutionary taxonomic approach, but these hypotheses have not fully been tested using cladistic analysis. Focusing mainly on freshwater species, but including at least one representative of each marine genus and one representative from each of several proposed subgeneric groupings of the genus Thalassiosira , we scored morphological characters for fossil and living marine and freshwater Thalassiosiraceae to test these hypotheses. Our cladistic results provide strong support for monophyly for the freshwater group, but it seems unlikely that the marine group is monophyletic. The cladistic results are corroborated to greater or lesser degrees by the fossil record. The implications for evolution in the group and for taxon sampling in molecular studies we are conducting will be discussed.  相似文献   

6.
The inflow of fresh water into coastal lagoons is a key factor influencing the structure and function of these ecosystems. Biscayne Bay, a coastal lagoon adjacent to the city of Miami, is located downstream of the Everglades ecosystem where the extensive water management system now in place has modified the historical hydrology, replacing groundwater and overland flows with pulsed releases from canals. In areas where canals discharge directly into littoral habitats, an environment with low-mean salinity and high-salinity variability is created. In this study, we characterize the salinity patterns of nearshore habitats (<500 m from shore) and document patterns of seasonal abundance and distribution of submerged aquatic vegetation (SAV) to evaluate the impacts of water management practices. Seagrasses were the principal component of the SAV community during the 2005 dry season (mean cover = 25.5%), while macroalgae dominated during the wet season (mean cover = 33.4%). The distribution and abundance of SAV were directly related to the tolerance of each taxon to salinity patterns. Seagrass species with high tolerance to low and variable salinity such as Halodule wrightii and Ruppia maritima were found only in canal-influenced areas and increased in abundance and spatial distribution in the wet season when freshwater inflow is highest. The dominance of rhizophytic macroalgae during the wet season was determined by the appearance and high abundance of Chara, a taxon commonly associated with freshwater environments. Thalassia testudinum, the most abundant seagrass species, was found throughout the study region, but decreased in abundance in the canal-influenced areas during the wet season when lower, more variable salinity resulted in lowered productivity. The data presented here showed a significant relationship between salinity patterns and the seasonal abundance and distribution of SAV. These findings support the use of SAV as appropriate indicators of changes in water quality resulting from future restoration projects associated with the Everglades Restoration Plan, which will once again modify the delivery of fresh water into littoral habitats with unknown ecological consequences. Handling editor: S. M. Thomaz  相似文献   

7.
At the end of 2002, the number of marine halacarid species was 1018, that of genera 51. A single genus, Copidognathus contains 33% of all species (336). Eleven genera are monotypic. Geographical provinces with a large number of species are the tropical western Pacific, temperate northeastern Atlantic, temperate southeastern Pacific, and Mediterranean-Black Sea. Most records of halacarid species are from temperate and tropical areas; 10% of species are known from polar zones. On a generic level, 29 genera are recorded from tropical and temperate but not from polar provinces, five genera are restricted to the tropics, and none to polar regions. The majority (920 species or 90%) of all species live in the upper 200 m. Records of genera with exclusively algivorous or brackish/fresh water species are bound to littoral habitats; all the other genera occur in more than one depth zone. Arenicolous genera, though most abundant in the littoral zone, have representatives in the bathyal. Four marine genera (Copidognathus, Halacarellus, Isobactrus, Lohmannella) have representatives in coastal fresh water, and three genera, Acarothrix, Caspihalacarus and Peregrinacarus, are predominantly inhabitants of diluted brackish and fresh water. None of the free-living halacarid genera of the world's oceans appears to be endemic to one geographical province.  相似文献   

8.
Study on the total spectrum of organisms (72 species) subjected to hydrostatic pressure as of this date allows one to established categories of pressure tolerance (resistance): Extremely high – eurybiotic forms (1000–1200 atm), High – marine littoral, planktonic, freshwater (600–1000 atm), Moderate – marine littoral, planktonic, freshwater (400–600 atm), Low – planktonic, freshwater (100–300 atm), Extremely low – planktonic, freshwater (0–100 atm). The average pressure tolerance of marine littoral species is higher than that of planktonic species but not significantly different from freshwater species. Eurybiotic species which are not marine seem to show the highest pressure tolerance.  相似文献   

9.
10.
Freshwater habitats make up only ~0.01% of available aquatic habitat and yet harbor 40% of all fish species, whereas marine habitats comprise >99% of available aquatic habitat and have only 60% of fish species. One possible explanation for this pattern is that diversification rates are higher in freshwater habitats than in marine habitats. We investigated diversification in marine and freshwater lineages in the New World silverside fish clade Menidiinae (Teleostei, Atherinopsidae). Using a time‐calibrated phylogeny and a state‐dependent speciation–extinction framework, we determined the frequency and timing of habitat transitions in Menidiinae and tested for differences in diversification parameters between marine and freshwater lineages. We found that Menidiinae is an ancestrally marine lineage that independently colonized freshwater habitats four times followed by three reversals to the marine environment. Our state‐dependent diversification analyses showed that freshwater lineages have higher speciation and extinction rates than marine lineages. Net diversification rates were higher (but not significant) in freshwater than marine environments. The marine lineage‐through time (LTT) plot shows constant accumulation, suggesting that ecological limits to clade growth have not slowed diversification in marine lineages. Freshwater lineages exhibited an upturn near the recent in their LTT plot, which is consistent with our estimates of high background extinction rates. All sequence data are currently being archived on Genbank and phylogenetic trees archived on Treebase.  相似文献   

11.
Incursions of marine water into South America during the Miocene prompted colonization of freshwater habitats by ancestrally marine species and present a unique opportunity to study the molecular evolution of adaptations to varying environments. Freshwater and marine environments are distinct in both spectra and average intensities of available light. Here, we investigate the molecular evolution of rhodopsin, the photosensitive pigment in the eye that activates in response to light, in a clade of South American freshwater anchovies derived from a marine ancestral lineage. Using likelihood-based comparative sequence analyses, we found evidence for positive selection in the rhodopsin of freshwater anchovy lineages at sites known to be important for aspects of rhodopsin function such as spectral tuning. No evidence was found for positive selection in marine lineages, nor in three other genes not involved in vision. Our results suggest that an increased rate of rhodopsin evolution was driven by diversification into freshwater habitats, thereby constituting a rare example of molecular evolution mirroring large-scale palaeogeographic events.  相似文献   

12.
The midgut glands (hepatopancreas) of terrestrial isopods contain bacterial symbionts. We analysed the phylogenetic diversity of hepatopancreatic bacteria in isopod species from various suborders colonizing marine, semiterrestrial, terrestrial and freshwater habitats. Hepatopancreatic bacteria were absent in the marine isopod Idotea balthica (Valvifera). The symbiotic bacteria present in the midgut glands of the freshwater isopod Asellus aquaticus (Asellota) were closely related to members of the proteobacterial genera Rhodobacter, Burkholderia, Aeromonas or Rickettsiella, but differed markedly between populations. By contrast, species of the suborder Oniscidea were consistently colonized by the same phylotypes of hepatopancreatic bacteria. While symbionts in the semiterrestrial isopod Ligia oceanica (Oniscidea) were close relatives of Pseudomonas sp. (Gammaproteobacteria), individuals of the terrestrial isopod Oniscus asellus (Oniscidea) harboured either 'Candidatus Hepatoplasma crinochetorum' (Mollicutes) or 'Candidatus Hepatincola porcellionum' (Rickettsiales), previously described as symbionts of another terrestrial isopod, Porcellio scaber. These two uncultivated bacterial taxa were consistently present in each population of six and three different species of terrestrial isopods, respectively, collected in different geographical locations. However, infection rates of individuals within a population ranged between 10% and 100%, rendering vertical transmission unlikely. Rather, feeding experiments suggest that 'Candidatus Hepatoplasma crinochetorum' is environmentally transmitted to the progeny.  相似文献   

13.
At the end of 2002, the number of marine halacarid species was 1018, that of genera 51. A single genus, Copidognathus contains 33% of all species (336). Eleven genera are monotypic. Geographical provinces with a large number of species are the tropical western Pacific, temperate northeastern Atlantic, temperate southeastern Pacific, and Mediterranean-Black Sea. Most records of halacarid species are from temperate and tropical areas; 10% of species are known from polar zones. On a generic level, 29 genera are recorded from tropical and temperate but not from polar provinces, five genera are restricted to the tropics, and none to polar regions. The majority (920 species or 90%) of all species live in the upper 200 m. Records of genera with exclusively algivorous or brackish/fresh water species are bound to littoral habitats; all the other genera occur in more than one depth zone. Arenicolous genera, though most abundant in the littoral zone, have representatives in the bathyal. Four marine genera (Copidognathus, Halacarellus, Isobactrus, Lohmannella) have representatives in coastal fresh water, and three genera, Acarothrix, Caspihalacarus and Peregrinacarus, are predominantly inhabitants of diluted brackish and fresh water. None of the free-living halacarid genera of the world's oceans appears to be endemic to one geographical province.  相似文献   

14.
Pufferfishes of the Family Tetraodontidae are the most speciose group in the Order Tetraodontiformes and mainly inhabit coastal waters along continents. Although no members of other tetraodontiform families have fully discarded their marine lives, approximately 30 tetraodontid species spend their entire lives in freshwaters in disjunct tropical regions of South America, Central Africa, and Southeast Asia. To investigate the interrelationships of tetraodontid pufferfishes and thereby elucidate the evolutionary origins of their freshwater habitats, we performed phylogenetic analysis based on whole mitochondrial genome sequences from 50 tetraodontid species and closely related species (including 31 newly determined sequences). The resulting phylogenies reveal that the family is composed of four major lineages and that freshwater species from the different continents are independently nested in two of the four lineages. A monophyletic origin of the use of freshwater habitats was statistically rejected, and ancestral habitat reconstruction on the resulting tree demonstrates that tetraodontids independently entered freshwater habitats in different continents at least three times. Relaxed molecular-clock Bayesian divergence time estimation suggests that the timing of these invasions differs between continents, occurring at 0-10 million years ago (MA) in South America, 17-38 MA in Central Africa, and 48-78 MA in Southeast Asia. These timings are congruent with geological events that could facilitate adaptation to freshwater habitats in each continent.  相似文献   

15.
Abstract. We sequenced the 18S rRNA gene from 11 nematomorph species from 9 genera and derived hypotheses concerning the sister group of Nematomorpha and relationships within this taxon. The molecular and morphological data are consistent with the monophyly of Nematomorpha, a sister-group relationship between Nematomorpha and Nematoda, and a sister-group relationship between the marine genus Nectonema and all of the freshwater taxa, Gordiida. Hypotheses of relationships within Gordiida support the traditional taxa Gordiidae, Chordodidae, and Chordodinae but reject Parachordodinae and Spinochordodidae. The molecular results differ from those of previous morphological studies by suggesting a reduction of the two tail lobes at the posterior end of males in Chordodinae, monophyly of the genus Paragordionus , and paraphyly of the genus Chordodes .  相似文献   

16.
To evaluate trends in the osmoregulatory behavior of neotropical, palaemonid shrimps, we investigated osmotic and ionic regulatory patterns in five species of Palaemon or Macrobrachium. The species' life histories depend on saline water to differing degrees, their habitats ranging from the marine/intertidal (P. northropi), through estuaries (P. pandaliformis) to coastal, freshwater streams (M. olfersii, M. potiuna) and inland, continental river systems (M. brasiliense). Hemolymph osmolality, chloride, sodium and magnesium concentrations were measured in shrimps exposed to experimental media ranging from fresh water (<0.5 per thousand ) to concentrated seawater (42 per thousand ) for up to 10 days. The marine and estuarine Palaemon species exhibit well-developed hyper/hypo-osmotic, sodium and chloride regulatory capabilities in mid-range salinities, tending to hyperconform in low salinities. The freshwater Macrobrachium species show variable hyperosmotic, sodium and chloride regulatory capacities, tending to hypoconform or unable to survive at higher salinities. All species hyper-regulate magnesium in fresh water, but hyporegulate strongly in saline media. Palaemonids from the saline habitats show the strongest osmoregulatory capabilities, and fresh water may have been gradually invaded by ancestral species with similar regulatory capacity. However, this regulatory plasticity has been lost to varying degrees in extant freshwater species.  相似文献   

17.
The transition from marine to freshwater habitats is one of the major steps in the evolution of life. In the decapod crustaceans, four groups have colonized fresh water at different geological times since the Triassic, the freshwater shrimps, freshwater crayfish, freshwater crabs and freshwater anomurans. Some families have even colonized terrestrial habitats via the freshwater route or directly via the sea shore. Since none of these taxa has ever reinvaded its environment of origin the Decapoda appear particularly suitable to investigate life‐history adaptations to fresh water. Evolutionary comparison of marine, freshwater and terrestrial decapods suggests that the reduction of egg number, abbreviation of larval development, extension of brood care and lecithotrophy of the first posthatching life stages are key adaptations to fresh water. Marine decapods usually have high numbers of small eggs and develop through a prolonged planktonic larval cycle, whereas the production of small numbers of large eggs, direct development and extended brood care until the juvenile stage is the rule in freshwater crayfish, primary freshwater crabs and aeglid anomurans. The amphidromous freshwater shrimp and freshwater crab species and all terrestrial decapods that invaded land via the sea shore have retained ocean‐type planktonic development. Abbreviation of larval development and extension of brood care are interpreted as adaptations to the particularly strong variations of hydrodynamic parameters, physico‐chemical factors and phytoplankton availability in freshwater habitats. These life‐history changes increase fitness of the offspring and are obviously favoured by natural selection, explaining their multiple origins in fresh water. There is no evidence for their early evolution in the marine ancestors of the extant freshwater groups and a preadaptive role for the conquest of fresh water. The costs of the shift from relative r‐ to K‐strategy in freshwater decapods are traded‐off against fecundity, future reproduction and growth of females and perhaps against size of species but not against longevity of species. Direct development and extension of brood care is associated with the reduction of dispersal and gene flow among populations, which may explain the high degree of speciation and endemism in directly developing freshwater decapods. Direct development and extended brood care also favour the evolution of social systems, which in freshwater decapods range from simple subsocial organization to eusociality. Hermaphroditism and parthenogenesis, which have evolved in some terrestrial crayfish burrowers and invasive open water crayfish, respectively, may enable populations to adapt to restrictive or new environments by spatio‐temporal alteration of their socio‐ecological characteristics. Under conditions of rapid habitat loss, environmental pollution and global warming, the reduced dispersal ability of direct developers may turn into a severe disadvantage, posing a higher threat of extinction to freshwater crayfish, primary freshwater crabs, aeglids and landlocked freshwater shrimps as compared to amphidromous freshwater shrimps and secondary freshwater crabs.  相似文献   

18.
The physiological challenges incurred during the transition from sea to fresh water and the constraints they place on the rate at which the common galaxiid Galaxias maculatus and the climbing galaxiid Galaxias brevipinnis can migrate from marine to freshwater habitats were examined. The duration of the marine to freshwater transition, the relationship between post-settlement age (PSA) and standard length ( L S) as a proxy for energetic costs incurred during settlement and the potential effects of estuary geomorphology on migratory behaviour was investigated. Rate of upstream migration after settlement was not uniform. Upstream migration rate was slowest directly after settlement and increased with increasing PSA and distance from the river mouth, indicating a delay in upstream migration by newly recruited galaxiids. L s did not increase with age, at least within the first 21 days post settlement. These patterns were consistent for both species, in spite of differences in their life histories, across the recruitment season, despite seasonal variation in recruit size, and among estuaries with different properties. The results suggest that the timing and speed of migratory behaviour primarily reflect physiological constraints. Given the duration of residency of these species in estuaries, this study indicates that estuaries are critical transitional habitats for diadromous fishes during their migration from marine to freshwater habitats.  相似文献   

19.
The freshwater eels of the genus Anguilla, which are catadromous, migrate between freshwater growth habitats and offshore spawning areas. A number of recent studies, however, found examples of the temperate species Anguilla anguilla, Anguilla rostrata, Anguilla japonica, Anguilla australis and Anguilla dieffenbachii that have never migrated into fresh water, spending their entire life history in the ocean. Furthermore, those studies found an intermediate type between marine and freshwater residents, which appear to frequently move between different environments during their growth phase. The discovery of marine and brackish-water residents Anguilla spp. suggests that they do not all have to be catadromous, and it calls into question the generalized classification of diadromous fishes. There has been little available information, however, concerning migration in tropical Anguilla spp. Anguilla marmorata, shows three fluctuation patterns: (1) continuous residence in fresh water, (2) continuous residence in brackish water and (3) residence in fresh water after recruitment, while returning to brackish water. Such migratory patterns were found in other tropical species, Anguilla bicolor bicolor and Anguilla bicolor pacifica. In A. b. bicolor collected in a coastal lagoon of Indonesia, two further patterns of habitat use were found: (1) constantly living in either brackish water or sea water with no freshwater life and (2) habitat shift from fresh water to brackish water or sea water. The wide range of environmental habitat use indicates that migratory behaviour of tropical Anguilla spp. is facultative among fresh, brackish and marine waters during their growth phases after recruitment to the coastal areas. Further, the migratory behaviours of tropical Anguilla spp. appear to differ in each habitat in response to inter and intra-specific competition. The results suggest that tropical Anguilla spp. have a flexible pattern of migration, with an ability to adapt to various habitats and salinities. The ability of anguillids to reside in environments of various salinities would be a common feature between tropical and temperate species without a latitudinal cline. Thus, the migration of Anguilla spp. into fresh water is clearly not an obligatory behaviour. This evidence of geographical variability among Anguilla spp. suggests that habitat use is determined by environmental conditions in each site.  相似文献   

20.
Analysis of 36 records of the rarely encountered moray Gymnothorax polyuranodon indicate that juveniles and adults inhabit fresh and mildly brackish habitats (salinity < 5) in streams of the Australian Wet Tropics Eighty-one per cent of these records were from freshwater streams and collectively demonstrate that this species inhabits fresh water throughout all seasons. A survey of fish researchers, each with at least 100 h of field experience in Australia's Wet Tropics, revealed that 33% of researchers working in fresh waters (nine of 27 researchers) had encountered the species and 15% of researchers with substantial experience working in estuaries (two of 13 researchers) had encountered the species. The species was not sampled or observed in the nearshore marine environment. The only record of an elver of this species was, however, found in an estuary at a salinity of 33·4. This preliminary evidence suggests adult G. polyuranodon occupy freshwater habitats, but further research is required to understand the complete life cycle, including movements, habitat use and reproductive ecology of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号