首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Macrophages are key regulators of immune responses. In the absence of an activating signal, murine bone marrow-derived macrophages undergo proliferation in response to their specific growth factor, namely M-CSF. The addition of bacterial LPS results in macrophage growth arrest and their engagement in a proinflammatory response. Although participation of ERKs is required for both macrophage proliferation and activation, ERK phosphorylation follows a more delayed pattern in response to activating agents. In primary macrophages, mitogen kinase phosphatase-1 (MKP-1) is a key regulator of the time course of MAPK activity. Here we showed that MKP-1 expression is dependent on Raf-1 activation. The time course of Raf-1 activation correlated with that of ERK-1/2. However, whereas ERK phosphorylation in response to M-CSF is Raf-1 dependent, in response to LPS, an alternative pathway directs the activation of these kinases. Inhibition of Raf-1 activity increased the expression of cyclin-dependent kinase inhibitors and growth arrest. In contrast, no effect was observed in the expression of proinflammatory cytokines and inducible NO synthase following LPS stimulation. The data reported here reveal new insights into how signaling determines opposing macrophage functions.  相似文献   

3.
4.
Elevated NO production has been detected in patients suffering from various arthropathies; however, its role and regulation during gouty arthritis remain largely unexplored. Monosodium urate (MSU) crystals, the causative agent of gout, have been shown to induce NO generation in vivo and inducible NO synthase (iNOS) expression in human monocytes. The present study was designed to evaluate the ability of MSU crystals to modulate macrophage (M phi) iNOS expression and NO synthesis and to investigate the molecular mechanisms underlying these cellular responses. We found that MSU crystals did not induce NO production in murine J774 M phi. However, a synergistic effect on the level of iNOS expression and NO generation was observed in cells exposed to MSU crystals in combination with IFN-gamma. Characterization of the second messengers involved revealed the requirement of IFN-gamma-mediated Janus kinase 2/STAT1 alpha activation even though MSU crystals did not modulate this signaling cascade by themselves. MSU crystals exerted their up-regulating effect by increasing extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and NF-kappa B nuclear translocation in response to IFN-gamma. The use of specific inhibitors against either NF-kappa B or the ERK1/2 pathway significantly reduced MSU + IFN-gamma-inducible NF-kappa B activity, iNOS expression, and NO production. Altogether, these data indicate that MSU crystals exert a potent synergistic effect on the IFN-gamma-inducible M phi NO generation via ERK1/2- and NF-kappa B-dependent pathways. Understanding the molecular mechanisms through which MSU crystals amplify M phi responses to proinflammatory cytokines such as IFN-gamma will contribute to better define their role in NO regulation during gout, in particular, and inflammation, in general.  相似文献   

5.
Rhinoviruses (RV) are the major cause of acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Rhinoviruses have been shown to activate macrophages, but rhinovirus replication in macrophages has not been reported. Tumor necrosis factor alpha (TNF-alpha) is implicated in the pathogenesis of acute exacerbations, but its cellular source and mechanisms of induction by virus infection are unclear. We hypothesized that rhinovirus replication in human macrophages causes activation and nuclear translocation of NF-kappaB, leading to TNF-alpha production. Using macrophages derived from the human monocytic cell line THP-1 and from primary human monocytes, we demonstrated that rhinovirus replication was productive in THP-1 macrophages, leading to release of infectious virus into supernatants, but was limited in monocyte-derived macrophages, likely due to type I interferon production, which was robust in monocyte-derived but deficient in THP-1-derived macrophages. Similar to bronchial epithelial cells, only small numbers of cells supported complete virus replication. We demonstrated RV-induced activation of NF-kappaB and colocalization of p65/NF-kappaB nuclear translocation with virus replication in both macrophage types. The infection induced TNF-alpha release in a time- and dose-dependent, RV serotype- and receptor-independent manner and was largely (THP-1 derived) or completely (monocyte derived) dependent upon virus replication. Finally, we established the requirement for NF-kappaB but not p38 mitogen-activated protein kinase in induction of TNF-alpha. These data suggest RV infection of macrophages may be an important source of proinflammatory cytokines implicated in the pathogenesis of exacerbations of asthma and COPD. They also confirm inhibition of NF-kappaB as a promising target for development of new therapeutic intervention strategies.  相似文献   

6.
7.
Double-stranded (ds) RNA, which accumulates during viral replication, activates the antiviral response of infected cells. In this study, we have identified a requirement for extracellular signal-regulated kinase (ERK) in the regulation of interleukin 1 (IL-1) expression by macrophages in response to dsRNA and viral infection. Treatment of RAW 264.7 cells or mouse macrophages with dsRNA stimulates ERK phosphorylation that is first apparent following a 15-min incubation and persists for up to 60 min, the accumulation of iNOS and IL-1 mRNA following a 6-h incubation, and the expression of iNOS and IL-1 at the protein level following a 24-h incubation. Inhibitors of ERK activation prevent dsRNA-induced ERK phosphorylation and IL-1 expression by macrophages. The regulation of macrophage activation by ERK appears to be selective for IL-1, as ERK inhibition does not attenuate dsRNA-induced iNOS expression by macrophages. dsRNA stimulates both ERK activation and IL-1 expression by macrophages isolated from dsRNA-dependent protein kinase (PKR)-deficient mice, indicating that PKR does not participate in this antiviral response. These findings support a novel PKR-independent role for ERK in the regulation of the antiviral response of IL-1 expression and release by macrophages.  相似文献   

8.
ABSTRACT: BACKGROUND: Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. RESULTS: Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-gamma, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-gamma and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production. CONCLUSIONS: The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype.  相似文献   

9.
High-output nitric oxide (NO) production from activated macrophages, resulting from the induction of inducible NO synthase (iNOS) expression, represents a major mechanism for macrophage cytotoxicity against pathogens. However, despite its beneficial role in host defense, sustained high-output NO production was also implicated in a variety of acute inflammatory diseases and autoimmune diseases. Therefore, the down-regulation of iNOS expression during an inflammatory process plays a significant physiological role. This study examines the role of two immunomodulatory neuropeptides, the vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP), on NO production by LPS-, IFN-gamma-, and LPS/IFN-gamma-stimulated peritoneal macrophages and the Raw 264.7 cell line. Both VIP and PACAP inhibit NO production in a dose- and time-dependent manner by reducing iNOS expression at protein and mRNA level. VPAC1, the type 1 VIP receptor, which is constitutively expressed in macrophages, and to a lesser degree VPAC2, the type 2 VIP receptor, which is induced upon macrophage activation, mediate the effect of VIP/PACAP. VIP/PACAP inhibit iNOS expression and activity both in vivo and in vitro. Two transduction pathways appear to be involved, a cAMP-dependent pathway that preferentially inhibits IFN regulatory factor-1 transactivation and a cAMP-independent pathway that blocks NF-kappa B binding to the iNOS promoter. The down-regulation of iNOS expression, together with previously reported inhibitory effects on the production of the proinflammatory cytokines IL-6, TNF-alpha, and IL-12, and the stimulation of the anti-inflammatory IL-10, define VIP and PACAP as "macrophage deactivating factors" with significant physiological relevance.  相似文献   

10.
Previous studies have shown the mitogen-activated protein kinases (MAPKs) to be activated in macrophages upon infection with Mycobacterium, and that expression of TNF-alpha and inducible NO synthase by infected macrophages was dependent on MAPK activation. Additional analysis demonstrated a diminished activation of p38 and extracellular signal-regulated kinase (ERK)1/2 in macrophages infected with pathogenic strains of Mycobacterium avium compared with infections with the fast-growing, nonpathogenic Mycobacterium smegmatis and Mycobacterium phlei. However, the upstream signals required for MAPK activation and the mechanisms behind the differential activation of the MAPKs have not been defined. In this study, using bone marrow-derived macrophages from BALB/c mice, we determined that ERK1/2 activation was dependent on the calcium/calmodulin/calmodulin kinase II pathway in both M. smegmatis- and M. avium-infected macrophages. However, in macrophages infected with M. smegmatis but not M. avium, we observed a marked increase in cAMP production that remained elevated for 8 h postinfection. This M. smegmatis-induced cAMP production was also dependent on the calmodulin/calmodulin kinase pathway. Furthermore, stimulation of the cAMP/protein kinase A pathway in M. smegmatis-infected cells was required for the prolonged ERK1/2 activation and the increased TNF-alpha production observed in these infected macrophages. Our studies are the first to demonstrate an important role for the calmodulin/calmodulin kinase and cAMP/protein kinase A pathways in macrophage signaling upon mycobacterial infection and to show how cAMP production can facilitate macrophage activation and subsequent cytokine production.  相似文献   

11.
12.
In response to virus infection or treatment with dsRNA, macrophages express the inducible form of cyclooxygenase-2 (COX-2) and produce proinflammatory prostaglandins. Recently, we have shown that NF-kappaB is required for encephalomyocarditis virus (EMCV)- and dsRNA-stimulated COX-2 expression in mouse macrophages. The dsRNA-dependent protein kinase R is not required for EMCV-stimulated COX-2 expression, suggesting the presence of protein kinase R-independent pathways in the regulation of this antiviral gene. In this study, the role of MAPK in the regulation of macrophage expression of cyclooxygenase-2 (COX)-2 in response to EMCV infection was examined. Treatment of mouse macrophages or RAW-264.7 cells with dsRNA or infection with EMCV stimulates the rapid activation of the MAPKs p38, JNK, and ERK. Inhibition of p38 and JNK activity results in attenuation while ERK inhibition does not modulate dsRNA- and EMCV-induced COX-2 expression and PGE2 production by macrophages. JNK and p38 appear to selectively regulate COX-2 expression, as inhibition of either kinase fails to prevent dsRNA- or EMCV-stimulated inducible NO synthase expression by macrophages. Using macrophages isolated from TLR3-deficient mice, we show that p38 and JNK activation and COX-2 expression in response to EMCV or poly(IC) does not require the presence the dsRNA receptor TLR3. These findings support a role for p38 and JNK in the selective regulation of COX-2 expression by macrophages in response to virus infection.  相似文献   

13.
Alveolar macrophages (AM) are one of the key cell types for initiating inflammatory and immune responses to influenza virus in the lung. However, the genome-wide changes in response to influenza infection in AM have not been defined. We performed gene profiling of human AM in response to H1N1 influenza A virus PR/8 using Affymetrix HG-U133 Plus 2.0 chips and verified the changes at both mRNA and protein levels by real-time RT-PCR and ELISA. We confirmed the response with a contemporary H3N2 influenza virus A/New York/238/2005 (NY/238). To understand the local cellular response, we also evaluated the impact of paracrine factors on virus-induced chemokine and cytokine secretion. In addition, we investigated the changes in the expression of macrophage receptors and uptake of pathogens after PR/8 infection. Although macrophages fail to release a large amount of infectious virus, we observed a robust induction of type I and type III interferons and several cytokines and chemokines following influenza infection. CXCL9, 10, and 11 were the most highly induced chemokines by influenza infection. UV-inactivation abolished virus-induced cytokine and chemokine response, with the exception of CXCL10. The contemporary influenza virus NY/238 infection of AM induced a similar response as PR/8. Inhibition of TNF and/or IL-1β activity significantly decreased the secretion of the proinflammatory chemokines CCL5 and CXCL8 by over 50%. PR/8 infection also significantly decreased mRNA levels of macrophage receptors including C-type lectin domain family 7 member A (CLEC7A), macrophage scavenger receptor 1 (MSR1), and CD36, and reduced uptake of zymosan. In conclusion, influenza infection induced an extensive proinflammatory response in human AM. Targeting local components of innate immune response might provide a strategy for controlling influenza A infection-induced proinflammatory response in vivo.  相似文献   

14.
Regulation of the inflammatory infiltrate is critical to the successful outcome of pneumonia. Alveolar macrophage apoptosis is a feature of pneumococcal infection and aids disease resolution. The host benefits of macrophage apoptosis during the innate response to bacterial infection are incompletely defined. Because NO is required for optimal macrophage apoptosis during pneumococcal infection, we have explored the role of macrophage apoptosis in regulating inflammatory responses during pneumococcal pneumonia, using inducible NO synthase (iNOS)-deficient mice. iNOS(-/-) mice demonstrated decreased numbers of apoptotic macrophages as compared with wild-type C57BL/6 mice following pneumococcal challenge, greater recruitment of neutrophils to the lung and enhanced expression of TNF-alpha. Pharmacologic inhibition of iNOS produced similar results. Greater pulmonary inflammation was associated with greater levels of early bacteremia, IL-6 production, lung inflammation, and mortality within the first 48 h in iNOS(-/-) mice. Labeled apoptotic alveolar macrophages were phagocytosed by resident macrophages in the lung and intratracheal instillation of exogenous apoptotic macrophages decreased neutrophil recruitment in iNOS(-/-) mice and decreased TNF-alpha mRNA in lungs and protein in bronchial alveolar lavage, as well as chemokines and cytokines including IL-6. These changes were associated with a lower probability of mice becoming bacteremic. This demonstrates the potential of apoptotic macrophages to down-regulate the inflammatory response and for the first time in vivo demonstrates that clearance of apoptotic macrophages decreases neutrophil recruitment and invasive bacterial disease during pneumonia.  相似文献   

15.
Cecal ligation and puncture (CLP) caused septic peritonitis in wild-type (WT) mice, with approximately 33% mortality within 7 days after the procedure. Concomitantly, the protein level of intraperitoneal CX3CL1/fractalkine was increased, with infiltration by CX3CR1-expressing macrophages into the peritoneum. CLP induced 75% mortality in CX3CR1-deficient (CX3CR1(-/-)) mice, which, however, exhibited a similar degree of intraperitoneal leukocyte infiltration as WT mice. Despite this, CX3CR1(-/-) mice exhibited impairment in intraperitoneal bacterial clearance, together with a reduction in the expression of intraperitoneal inducible NO synthase (iNOS) and bactericidal proinflammatory cytokines, including IL-1beta, TNF-alpha, IFN-gamma, and IL-12, compared with WT mice. Bactericidal ability of peritoneal phagocytes such as neutrophils and macrophages was consistently attenuated in CX3CR1(-/-) mice compared with WT mice. Moreover, when WT macrophages were stimulated in vitro with CX3CL1, their bactericidal activity was augmented in a dose-dependent manner, with enhanced iNOS gene expression and subsequent NO generation. Furthermore, CX3CL1 enhanced the gene expression of IL-1beta, TNF-alpha, IFN-gamma, and IL-12 by WT macrophages with NF-kappaB activation. Thus, CX3CL1-CX3CR1 interaction is crucial for optimal host defense against bacterial infection by activating bacterial killing functions of phagocytes, and by augmenting iNOS-mediated NO generation and bactericidal proinflammatory cytokine production mainly through the NF-kappaB signal pathway, with few effects on macrophage infiltration.  相似文献   

16.
Bone marrow-derived macrophages proliferate in response to specific growth factors, including macrophage colony-stimulating factor (M-CSF). When stimulated with activating factors, such as lipopolysaccharide (LPS), macrophages stop proliferating and produce proinflammatory cytokines. Although triggering opposed responses, both M-CSF and LPS induce the activation of extracellular-regulated kinases (ERKs) 1 and 2. However, the time-course of ERK activation is different; maximal activation by M-CSF and LPS occurred after 5 and 15 min of stimulation, respectively. Granulocyte/macrophage colony-stimulating factor, interleukin 3, and TPA, all of which induced macrophage proliferation, also induced ERK activity, which was maximal at 5 min poststimulation. The use of PD98059, which specifically blocks ERK 1 and 2 activation, demonstrated that ERK activity was necessary for macrophage proliferation in response to these factors. The treatment with phosphatidylcholine-specific phospholipase C (PC-PLC) inhibited macrophage proliferation, induced the expression of cytokines, and triggered a pattern of ERK activation equivalent to that induced by LPS. Moreover, PD98059 inhibited the expression of cytokines induced by LPS or PC-PLC, thus suggesting that ERK activity is also required for macrophage activation by these two agents. Activation of the JNK pathway did not discriminate between proliferative and activating stimuli. In conclusion, our results allow to correlate the differences in the time-course of ERK activity with the macrophagic response toward proliferation or activation.  相似文献   

17.
BackgroundRotavirus (RV) is the primary causative agent for viral gastroenteritis among infants and young children worldwide. Currently, no clinically approved and effective antiviral drug for the treatment of RV infection is available.PurposeWe investigated the potential anti-RV activity of resveratrol and underlying mechanisms by which resveratrol acted against RV.MethodsThe anti-RV activity of resveratrol in vitro was evaluated using plaque reduction assays. The effects of resveratrol on yield of virion progeny, viral polyprotein expression and genomic RNA synthesis were respectively investigated using enzyme-linked immunosorbent assays, western blotting and qRT-PCR assays. Further, we also measured the antiviral effect of resveratrol by evaluation of antigen clearance and assessment of changes in proinflammatory cytokines/chemokines in RV-infected neonatal mouse model.ResultsOur results indicated that 20 μM of resveratrol significantly inhibited RV replication in Caco-2 cell line by suppressing RV RNA synthesis, protein expression, viroplasm plaque formation, progeny virion production, and RV-induced cytopathy independent of the different strains and cell lines of RV that we used. Analysis of the effect of time post-addition of resveratrol indicated that its application inhibited early processes in the RV replication cycle. Further study of the underlying mechanism of anti-RV activity indicated that resveratrol inhibited RV replication by suppressing expression of heat-shock protein 90 (HSP90) mRNA and protein, and that the effect occurred in a dose-dependent manner. Overexpression of HSP90 was found to have attenuated the inhibitory effect of resveratrol on RV replication. Interestingly, the application of resveratrol were found to down-regulate the level of inhibition of RV-mediated MEK1/2 and ERK phosphorylation. Using a RV-infected suckling mice model, we found that application of resveratrol significantly lessened the severity of diarrhea, decreased viral titers, and relieved associated symptoms. Levels of mRNA expression of interleukin-2, interleukin-10, tumor necrosis factor-α, interferon-γ, macrophage inflammatory protein 1, and monocyte chemotactic protein-1 were all found to have been sharply reduced in intestinal tissue from mice which had been treated with resveratrol (10 or 20 mg/kg) after RV infection (p < 0.05).ConclusionThese findings implied that resveratrol exhibits antiviral activity and could be a promising treatment for rotavirus infection.  相似文献   

18.
19.
Nitric oxide (NO) is an important regulator of immune responses. Effects of cytokines, such as tumor necrosis factor (TNF)-alpha or IFN-gamma, and bacterial products, such as lipopolysaccharide, on macrophage NO production have been well documented; however, the role of the extracellular matrix proteins, including collagen, in this process remains unclear. We previously reported that discoidin domain receptor 1 (DDR1), a nonintegrin collagen receptor, was expressed in human macrophages, and its activation facilitated their differentiation as well as cytokine/chemokine production. Here, we examined the role for DDR1 in collagen-induced NO production using the murine macrophage cell line J774 cells that endogenously express DDR1. Activation of J774 cells with collagen induced the expression of inducible NO synthase (iNOS) and NO production. Inhibition of DDR1, but not beta1-integrins, abolished collagen-induced iNOS and NO production. Activation of J774 cells with collagen-activated nuclear factor-kappaB, p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK) and a pharmacological inhibitor of each signaling molecule significantly reduced collagen-induced NO production. Thus, we have demonstrated, for the first time, that the interaction of DDR1 with collagen induces iNOS expression and subsequent NO synthesis in J774 cells through activation of NF-kappaB, p38 MAPK, and JNK and suggest that intervention of DDR1 signaling in macrophages may be useful in controlling inflammatory diseases in which NO plays a critical role.  相似文献   

20.
NO overproduction has been suggested to contribute to the immunopathology related to malaria infection. Even though a role for some parasite molecules (e.g., GPI) in NO induction has been proposed, the direct contribution of hemozoin (HZ), another parasite metabolite, remains to be established. Therefore, we were interested to determine whether Plasmodium falciparum (Pf) HZ and synthetic HZ, beta-hematin, alone or in combination with IFN-gamma, were able to induce macrophage (Mphi) NO synthesis. We observed that neither Pf HZ nor synthetic HZ led to NO generation in B10R murine Mphi; however, they significantly increased IFN-gamma-mediated inducible NO synthase (iNOS) mRNA and protein expression, and NO production. Next, by investigating the transductional mechanisms involved in this cellular regulation, we established that HZ induces extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase phosphorylation as well as NF-kappaB binding to the iNOS promoter, and enhances the IFN-gamma-dependent activation of both second messengers. Of interest, cell pretreatment with specific inhibitors against either NF-kappaB or the ERK1/2 pathway blocked the HZ + IFN-gamma-inducible NF-kappaB activity and significantly reduced the HZ-dependent increase on IFN-gamma-mediated iNOS and NO induction. Even though selective inhibition of the Janus kinase 2/STAT1alpha pathway suppressed NO synthesis in response to HZ + IFN-gamma, HZ alone did not activate this signaling pathway and did not have an up-regulating effect on the IFN-gamma-induced Janus kinase 2/STAT1alpha phosphorylation and STAT1alpha binding to the iNOS promoter. In conclusion, our results suggest that HZ exerts a potent synergistic effect on the IFN-gamma-inducible NO generation in Mphi via ERK- and NF-kappaB-dependent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号