首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evidence of increased crossing over rate in tomato hybrids infected with TAV (Tomato aspermy virus), PVX (Potato virus X), TMV (Tobacco mosaic virus), TMV+PVX indicates the recombinogenic effect of viral infection. Cytological studies of the early diakinesis in healthy and virus-infected tomato revealed significant changes in chiasma number and position. The most significant changes were established for bivalents with two interstitial chiasmata and with one terminal and one interstitial. The data obtained indicate redistribution of the chiasmata position and induction of additional exchanges. The virus-induced recombination is segment-specific and depends on the host plant genotype, virus infection and the interaction between them.  相似文献   

2.
In this paper we present the data on the disease intensity of the tomato plants grown in glass and plastic-houses, and in the open field. The infection was caused by the following viruses: Tomato mosaic virus (ToMV), Tobacco mosaic virus (TMV), Tomato spotted wilt virus (TSWV), Alfalfa mosaic virus (AMV), Potato virus X (PVX), Potato virus Y (PVY), Tomato black ring virus (TBRV), Tomato ringspot virus (ToRSV), Tomato aspermy virus (TAV), and Cucumber mosaic virus (CMV). These viruses represented most frequent tomato pathogens in Serbia. According to the obtained results, it could be concluded that 92.94% of the tested tomato plants grown in glass and plastic-houses, and 89.82% grown in the open field were infected by one of the above viruses. Most of the plant samples were infected by two or more viruses. The most frequent viruses — tomato pathogens in Serbia were ToMV, PVY and TMV.  相似文献   

3.
Wu XL  Hou WC  Wang MM  Zhu XP  Li F  Zhang JD  Li XZ  Guo XQ 《BMB reports》2008,41(5):376-381
The discovery of RNA silencing inhibition by virus encoded suppressors or low temperature leads to concerns about the stability of transgenic resistance. RNA-dependent RNA polymerase (RdRp) has been previously characterized to be essential for transgene-mediated RNA silencing. Here we showed that low temperature led to the inhibition of RNA silencing, the loss of viral resistance and the reduced expression of host RdRp homolog (NtRdRP1) in transgenic T4 progeny with untranslatable potato virus Y coat protein (PVY-CP) gene. Moreover, RNA silencing and the associated resistance were differently inhibited by potato virus X (PVX) and tobacco mosaic virus (TMV) infections. The increased expression of NtRdRP1 in both PVX and TMV infected plants indicated its general role in response to viral pathogens. Collectively, we propose that biotic and abiotic stress factors affect RNA silencing-mediated resistance in transgenic tobacco plants and that their effects target different steps of RNA silencing.  相似文献   

4.
Crop-to-wild hybridization has the potential to introduce beneficial traits into wild populations. Gene flow from genetically engineered crops, in particular, can transfer genes coding for traits such as resistance to herbicides, insect herbivores, disease, and environmental stress into wild plants. Cultivated sunflower (Helianthus annuus) hybridizes spontaneously with wild/weedy populations (also H. annuus), but little is known about the relative fitness of F1 hybrids. In order to assess the ease with which crop-to-wild introgression can proceed, we compared characteristics of F1 wild-crop progeny with those of purely wild genotypes. Two nontransgenic, cultivated varieties were crossed with wild plants from three different regions-Texas, Kansas, and North Dakota. Seed burial experiments in the region of origin showed that wild-crop seeds had somewhat higher germination rates (less dormancy) than wild seeds from Kansas and North Dakota, while no differences were seen in seeds from Texas. Progeny from each type of cross were grown in outdoor pots in Ohio and in a weedy field in Kansas to quantify lifetime fecundity and flowering phenology. Flowering periods of hybrid and wild progeny overlapped considerably, especially in plants from North Dakota and Texas, suggesting that these hybrids are very likely to backcross with wild plants. In general, hybrid plants had fewer branches, flower heads, and seeds than wild plants, but in two crosses the fecundity of hybrids was not significantly different from that of purely wild plants. In Ohio, wild-crop hybrids from North Dakota appeared to be resistant to a rust that infected 53% of the purely wild progeny, indicating a possible benefit of "traditional" crop genes. In summary, our results suggest that F1 wild-crop hybrids had lower fitness than wild genotypes, especially when grown under favorable conditions, but the F1 barrier to the introgression of crop genes is quite permeable.  相似文献   

5.
More often than not, analyses of virus evolution have considered that virus populations are so large that evolution can be explained by purely deterministic models. However, virus populations could have much smaller effective numbers than the huge reported census numbers, and random genetic drift could be important in virus evolution. A reason for this would be population bottlenecks during the virus life cycle. Here we report a quantitative estimate of population bottlenecks during the systemic colonization of tobacco leaves by Tobacco mosaic virus (TMV). Our analysis is based on the experimental estimation of the frequency of different genotypes of TMV in the inoculated leaf, and in systemically infected leaves, of tobacco plants coinoculated with two TMV genotypes. A simple model, based on the probability that a leaf in coinoculated plants is infected by just one genotype and on the frequency of each genotype in the source, was used to estimate the effective number of founders for the populations in each leaf. Results from the analysis of three leaves per plant in plants inoculated with different combinations of three TMV genotypes yielded highly consistent estimates. Founder numbers for each leaf were small, in the order of units. This would result in effective population numbers much smaller than the census numbers and indicates that random effects due to genetic drift should be considered for understanding virus evolution within an infected plant.  相似文献   

6.
Nicotiana benthamiana hairy root cultures were infected with tobacco mosaic virus (TMV) and used for in vitro plant virus propagation. The roots were infected with TMV by addition of virus to the medium at the same time as root inoculation. Viral accumulation in the biomass was 7-11-fold greater when the initial infection was carried out in B5 medium rather than sodium phosphate buffer; virus accumulation also increased with increasing viral inoculum concentration. The amount of TMV accumulated in the biomass was similar when virus was retained in the medium for the duration of the cultures and when the inoculum virus was removed 23h after addition to the roots. In roots with established infections, the concentration of virus remained relatively constant and did not increase with further root growth. The distribution of virus within individual root mats harvested from shake flasks was not uniform; there was also significant variability in viral accumulation between replicate hairy root cultures. The picture that emerges from this work is that in vitro viral accumulation in hairy root cultures depends strongly on the viral inoculum concentration applied and the initial level of primary infection achieved, even though primary infection by external virus occurs mainly within only the first few hours of exposure to the biomass and is followed by substantial secondary infection by viral progeny within the root tissue.  相似文献   

7.
Three types of mutation were introduced into the sequence encoding the GDD motif of the putative replicase component of potato virus X (PVX). All three mutations rendered the viral genome completely noninfectious when inoculated into Nicotiana clevelandii or into protoplasts of Nicotiana tabacum (cv. Samsun NN). In order to test whether these negative mutations could inactivate the viral genome in trans, the mutant genes were expressed in transformed N.tabacum (cv. Samsun NN) under control of the 35S RNA promoter of cauliflower mosaic virus and the transformed lines were inoculated with PVX. In 10 lines tested in which the GDD motif was expressed as GAD or GED there was no effect on susceptibility to PVX. In two of four lines transformed to express the ADD form of the conserved motif, the F1 and F2 progeny plants were highly resistant to infection by PVX, although only to strains closely related to the source of the transgene. The resistance was associated with suppression of PVX accumulation in the inoculated and systemic leaves and in protoplasts of the transformed plants, although some low level viral RNA production was observed in the inoculated but not the systemic leaves when the inoculum was as high as 100 or 250 micrograms/ml PVX RNA. These results suggest for a plant virus, as reported previously for Q beta phage, that virus resistance may be engineered by expression of dominant negative mutant forms of viral genes in transformed cells.  相似文献   

8.
Tobacco mosaic virus (TMV) is a widespread plant virus from the genus Tobamovirus that affects tobacco and tomato plants causing a pathology characterised by cell breakage and disorganisation in plant leaves and fruits. In this study we undertook a proteomic approach to investigate the molecular and biochemical mechanisms potentially involved in tomato fruit defence against the viral infection. The comparison of 2-D gels from control and TMV-infected but asymptomatic tomato fruits revealed changes in several proteins. The differential expression of peptidases, endoglucanase, chitinase and proteins participating in the ascorbate-glutathione cycle in infected fruits suggests that pathogenesis-related proteins and antioxidant enzymes may play a role in the protection against TMV infection. TMV coat protein appeared as a prominent spot in 2-D gels from TMV-infected asymptomatic fruits. A Triton X-114 phase-partitioning step of tomato protein extracts favoured the solubilisation of TMV coat protein and the enrichment of two aminopeptidases not present in control fruits. PMF and MS/MS data of the 2-D gel-isolated TMV coat protein is proposed as a powerful analysis method for the simultaneous tobamovirus detection, species determination and strain differentiation in virus-infected fruit commodities.  相似文献   

9.
The development and the possible mechanism of the chitosan-induced resistance to viral infection were investigated in potato plants. The plants were sprayed with a solution of chitosans (1 mg/ml) with the mol wt of 3, 36, and 120 kD. After 1, 2, 3, or 4 days, the treated leaves were cut off and mechanically infected with the potato virus X (PVX). The disks cut out from the inoculated leaves were used for determining virus accumulation, callose content, and ribonuclease and -1,3-glucanase activities. In another set of experiments, the plants were infected with PVX within 1, 4, or 8 days after chitosan treatment, and the number of systemically infected plants was determined. It was found that, a day after treatment, the plants acquired a resistance to viral infection. The disks from the chitosan-treated leaves, as compared to the control, accumulated less amount of virus. The chitosan treatment also significantly decreased the number of systemically infected plants as compared to the control. After 2–3 days, the resistance disappeared or even gave way to an increased susceptibility to the infection; subsequently, the resistance increased again. The extent of the resistance correlated with the callose content and the level of ribonuclease activity observed on the infection day. The resistance towards the infection with PVX is probably mediated by the callose and ribonuclease induction. The cultivation of test-tube potato plants from the cuttings previously infected with PVX on the chitosan-containing nutrient medium did not eradicate the viral infection from the plants.  相似文献   

10.
In 1973 tobacco mosaic virus (TMV) strain M II-16 was successfully used by growers in the United Kingdom to protect commercial tomato crops against the severe effects of naturally occurring strains of TMV. However, plants in many crops had mosaic leaf symptoms which were occasionally severe, so possible reasons for symptom appearance were examined. The concentration of the mutant strain in commercially produced inocula (assessed by infectivity and spectrophotometry) ranged from 28 to 1220 μg virus/ml; nevertheless all samples contained sufficient virus to infect a high percentage of inoculated tomato seedlings. Increasing the distance between the plants and the spray gun used for inoculation from 5 to 15 cm resulted in a significant decrease in the number of tomato seedlings infected. When M II-16 infected tomato plants were subsequently inoculated with each of fifty-three different isolates of TMV, none showed severe symptoms of the challenging isolates within 4 wk, although some isolates of strain o induced atypically mild leaf symptoms. In a further experiment, M II-16 infected plants showed conspicuous leaf symptoms only 7 wk after inoculation with a virulent TMV isolate. M II-16 multiplied more slowly in tomato plants and had a lower specific infectivity than a naturally occurring strain of TMV. More than 50% of plants in crops inoculated with strain M II-16 which subsequently showed conspicuous leaf mosaic contained TMV strain 1 or a form intermediate between strains o and 1. It is suggested that the production of TMV symptoms in commercial crops previously inoculated with strain M II-16 may result from an initially low level of infection, due to inefficient inoculation, which allows subsequent infection of unprotected plants by virulent strains. Incomplete protection by strain M II-16 against all naturally occurring strains may also be an important factor.  相似文献   

11.
We have explored the transient over-expression of Arabidopsis thaliana ascorbate peroxidase 3 (APX3) in Nicotiana benthamiana using a viral vector based on the potato virus X (PVX). Plants infected with a PVX:APX3 hybrid had a similar progression of viral particles compared to control plants infected with a PVX:GFP hybrid, indicating that infection was not affected by the over-expression of heterologous APX3. Our results also showed that in PVX:APX3-infected plants, the hybrid virus directed a high level of APX3 expression and the recombinant protein was functional, as inferred from the higher APX activity compared to mock and PVX:GFP hybrid-infected plants. The PVX recombinant expression system used is a simple and quick method for transient expression of heterologous APXs, which are expected to suffer specific processing in plant cells.  相似文献   

12.
Potato virus X as a vector for gene expression in plants   总被引:37,自引:0,他引:37  
The suitability of potato virus X (PVX) as a gene vector in plants was tested by analysis of two viral constructs. In the first, the GUS gene of Escherichia coli was substituted for the viral coat protein gene. In the second, GUS was added into the viral genome coupled to a duplicated copy of the viral promoter for the coat protein mRNA. The viral construct with the substituted coat protein gene accumulated poorly in inoculated protoplasts and failed to spread from the site of infection in plants. These results suggest a role for the viral coat protein in key stages of the viral infection cycle and show that gene replacement constructs are not suitable for the production of PVX-based gene vector. The construct with GUS coupled to the duplicated promoter for coat protein mRNA also accumulated less well in protoplasts than the unmodified PVX, but did infect systemically and directed high level synthesis of GUS in inoculated and systemically infected tissue. Although there was some genome instability in the PVX construct, much of the viral RNA in the systemically infected tissue had retained the foreign gene insertion, especially in infected Nicotiana clevelandii plants. These data point to a general utility of PVX as a vector for unregulated gene expression in plants.  相似文献   

13.
The p24 protein, one of the three proteins implicated in local movement of potato virus X (PVX), was expressed in transgenic tobacco plants (Nicotiana tabacum Xanthi D8 NN). Plants with the highest level of p24 accumulation exhibited a stunted and slightly chlorotic phenotype. These transgenic plants facilitate the cell-to-cell movement of a mutant of PVX that contained a frameshift mutation in p24. Upon inoculation with tobacco mosaic virus (TMV), the size of necrotic local lesions was significantly smaller in p24+ plants than in nontransgenic, control plants. Systemic resistance to tobamoviruses was also evidenced after inoculation of p24+ plants with Ob, a virus that evades the hypersensitive response provided by the N gene. In the latter case, no systemic symptoms were observed, and virus accumulation remained low or undetectable by Western immunoblot analysis and back-inoculation assays. In contrast, no differences were observed in virus accumulation after inoculation with PVX, although more severe symptoms were evident on p24-expressing plants than on control plants. Similarly, infection assays conducted with potato virus Y showed no differences between control and transgenic plants. On the other hand, a considerable delay in virus accumulation and symptom development was observed when transgenic tobacco plants containing the movement protein (MP) of TMV were inoculated with PVX. Finally, a movement defective mutant of TMV was inoculated on p24+ plants or in mixed infections with PVX on nontransgenic plants. Both types of assays failed to produce TMV infections, implying that TMV MP is not interchangeable with the PVX MPs.  相似文献   

14.
We describe a method for localizing plant viral RNAs in vivo using Pumilio, an RNA-binding protein, coupled to bimolecular fluorescence complementation (BiFC). Two Pumilio homology domain (PUMHD) polypeptides, fused to either the N- or C-terminal halves of split mCitrine, were engineered to recognize two closely adjacent eight-nucleotide sequences in the genomic RNA of tobacco mosaic virus (TMV). Binding of the PUMHDs to their target sites brought the split mCitrine halves into close proximity, allowing BiFC to occur and revealing the localization of viral RNA within infected cells. The bulk of the RNA was sequestered in characteristic inclusion bodies known as viral replication complexes (VRCs), with a second population of RNA localized in discrete particles distributed throughout the peripheral cytoplasm. Transfer of the TMV Pumilio recognition sequences into the genome of potato virus X (PVX) allowed the PVX RNA to be localized. Unlike TMV, the PVX RNA was concentrated in distinctive 'whorls' within the VRC. Optical sectioning of the PVX VRCs revealed that one of the viral movement proteins was localized to the centres of the RNA whorls, demonstrating significant partitioning of viral RNA and proteins within the VRC. The utility of Pumilio as a fluorescence-based reporter for viral RNA is discussed.  相似文献   

15.
Of the several possible sources of tomato mosaic virus, seeds and root debris in the soil are considered to be of greatest importance. A survey of 374,000 seedlings on ten commercial holdings found 0.05% of them infected, and although these were removed virus had been spread to other young plants which did not show infection when transplanted into the growing houses, seven of twenty-two of which contained a few infected plants when sampled shortly after planting. Virus overwintering on clothing, and debris on structures, are thought to be of minor importance, and smoking tobacco is seldom a source of infection for the tomato crop. A further survey of seventy-eight samples from tomato crops in Britain confirmed the 1960-61 survey: all were infected with tomato strains of TMV, none with tobacco strains, but one of the 187 infected seedlings referred to above was carrying a tobacco strain. Petunia was not as satisfactory as a special cultivar of White Burley tobacco for distinguishing between the tobacco and tomato TMV isolates. Observations and tests on a commercial holding showed that TMV was readily carried from plants in infected glasshouses into clean ones by workers, and once introduced, spread rapidly within the crop.  相似文献   

16.
Summary Ten genotypes, including inbreds, hybrids, and advanced populations, were examined in order to elucidate the relationship between position and frequency distribution of chiasmata and quantitative traits, including yield heterosis in common beans. The hybrid and advanced population groups were determined to possess 83% and 54% increased chiasma frequency, respectively in contrast to inbred lines. The increase in chiasma frequency of these populations was further manifested in a high number of interstitial chiasmata. The regular and superior chromosome behaviour of the hybrids was found to be positively associated with quantitative measures on bean yield, harvest index and bean yield efficiency. The results were discussed from the point of view that: a) increased interstitial chiasmata may provide an effective mechanism for maintaining genetic diversity and heterosis in hybrid populations; and b) heterosis for chiasma frequency and quantitative traits may be due to dispersed genes on the chromosomes having combined intra-and interallelic interactions. The data provide evidence for the existence of positive associations between interstitially localized chiasmata with its recombination potential and regular chromosome behaviour to bean yield heterosis. The role of enhanced interstitial chiasmata to promote higher levels of genetic variation and heterozygous advantage is discussed.  相似文献   

17.
Tre potato cultivars Erika and Krasava are unable to reproduce two strains of TMV systemically except when in graft symbiosis under normal greenhouse conditions with tomato which has been infected with the virus. The escape resistance of potato to TMV infection due to slight hypersensitivity was not changed either by long-lasting non-infectious symbiosis with TMV-sensitive tomato or in a constant environment (32±2 °C, 9 700 lx) which was adequate to change the hypersensitive reaction of some other TMV-hosts. On the contrary, enhanced temperature provoked a still more severe local and necrotic response in the potato varieties. This led to systemic necrosis and the quick death of potato components systemically infected in graft symbiosis with tomato under normal greenhouse conditions when transferred into an environment of enhanced temperature.  相似文献   

18.
Protocols elaborated with the objective of achieving valuable material for selection procedure of variants with virusresistance traits in tomato genotypes are presented. Preliminary results are demonstrated in the domain of testing for variability in somaclones obtained through indirect adventitous organogenesis initiated on leaf explants of cultivated tomato (Lycopersicon esculentum Mill.). Somaclones were grown in greenhouse conditions and variation of their symptoms upon infection with tomato mosaic (ToMV) or cucumber mosaic (CMV) respectively was observed. Tests for resistance to the local isolates of the above cited viruses were performed using enzyme linked immunosorbent assay and back inoculation onto diagnostic plants. Screening data are presented. Desirable variants were selected from cultivars ‘Moneymaker’, ‘Potentat’ and ‘Rutgers’. Some of the ‘Moneymaker’ somaclones exhibited increased tolerance to cucumber mosaic virus, a few seemed to be even fully resistant though most were susceptible as donor plants. The most favourable somaclonal lines are actually further tested and monitored for changes in horticultural characteristics. The described procedure of searching for resistance trait in specific pathogen-free (SPF) plants regenerated from infected tissue looks promising and thus can serve as aid in attaining appropriate objectives of breeding programme. Additionaly experiments were initiated to obtain somaclones from cultivars ‘Beta’, ‘Krakus’ and Stevens Rodade hybrid via regeneration of isolated protoplasts. To this end the callus stage was obtained from all donors.  相似文献   

19.
Ribozymes of the hammerhead class can be designed to cleave a target RNA in a sequence-specific manner and can potentially be used to specifically modulate gene activity. We have targeted the tobacco mosaic virus (TMV) genome with a ribozyme containing three catalytic hammerhead domains embedded within a 1 kb antisense RNA. The ribozyme was able to cleave TMV RNA at all three target sites in vitro at 25°C. Transgenic tobacco plants were generated which expressed the ribozyme or the corresponding antisense constructs directed at the TMV genome. Six of 38 independent transgenic plant lines expressing the ribozyme and 6 of 39 plant lines expressing the antisense gene showed some level of protection against TMV infection. Homozygous progeny of some lines were highly resistant to TMV; at least 50% of the plants remained asymptomatic even when challenged with high levels of TMV. These plants also displayed resistance to infection with TMV RNA or the related tomato mosaic virus (ToMV). In contrast, hemizygous plants of the same lines displayed only very weak resistance when inoculated with low amounts of TMV and no resistance against high inoculation levels. Resistance in homozygous plants was not overcome by a TMV strain which was altered at the three target sites to abolish ribozyme-mediated cleavage, suggesting that the ribozyme conferred resistance primarily by an antisense mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号