首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Plasmids carrying cDNA sequences to the mRNA species of infectious hematopoietic necrosis virus were constructed and cloned into Escherichia coli. Characterization of 21 cloned plasmids by hybridization to mRNA blots identified sets of plasmids with homology to each of the six viral mRNA species. R-loop mapping with these cDNA plasmids determined that the gene order on the infectious hematopoietic necrosis virus genome is (3')N-M1-M2-G-NV-L(5').  相似文献   

2.
The nucleotide sequence of the mRNA encoding the glycoprotein of infectious hematopoietic necrosis virus was determined from a cDNA clone containing the entire coding region. The G-protein cDNA is 1,609 nucleotides long (excluding the polyadenylic acid) and encodes a protein of 508 amino acids. The predicted amino acid sequence was compared with that of the glycoprotein of the Indiana and New Jersey serotypes of vesicular stomatitis virus and with the glycoprotein of rabies virus, using a computer program which determined optimal alignment. An amino acid identity of approximately 20% was found between infectious hematopoietic necrosis virus and the two vesicular stomatitis virus serotypes and between infectious hematopoietic necrosis virus and rabies virus. The positions and sizes of the signal sequence and transmembrane domain and the possible glycosylation sites were determined.  相似文献   

3.
Plaquing procedure for infectious hematopoietic necrosis virus.   总被引:5,自引:4,他引:1       下载免费PDF全文
A single overlay plaque assay was designed and evaluated for infectious hematopoietic necrosis virus. Epithelioma papillosum carpio cells were grown in normal atmosphere with tris(hydroxymethyl)aminomethane- or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)-buffered media. Plaques were larger and formed more quickly on 1- to 3-day-old cell monolayers than on older monolayers. Cell culture medium with a 10% addition of fetal calf serum (MEM 10) or without serum (MEM 0) were the most efficient virus diluents. Dilution with phosphate-buffered saline, saline, normal broth, or deionized water reduced plaque numbers. Variations in the pH (7.0 to 8.0) of a MEM 0 diluent did not affect plaque numbers. Increasing the volume of viral inoculum above 0.15 ml (15- by 60-mm plate) decreased plaquing efficiency. Significantly more plaques occurred under gum tragacanth and methylcellulose than under agar or agarose overlays. Varying the pH (6.8 to 7.4) of methylcellulose overlays did not significantly change plaque numbers. More plaques formed under the thicker overlays of both methylcellulose and gum tragacanth. Tris(hydroxymethyl)aminomethane and HEPES performed equally well, buffering either medium or overlay. Plaque numbers were reduced when cells were rinsed after virus adsorption or less than 1 h was allowed for adsorption. Variation in adsorption time between 60 and 180 min did not change plaque numbers. The mean plaque formation time was 7 days at 16 degrees C. The viral dose response was linear when the standardized assay was used.  相似文献   

4.
A single overlay plaque assay was designed and evaluated for infectious hematopoietic necrosis virus. Epithelioma papillosum carpio cells were grown in normal atmosphere with tris(hydroxymethyl)aminomethane- or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)-buffered media. Plaques were larger and formed more quickly on 1- to 3-day-old cell monolayers than on older monolayers. Cell culture medium with a 10% addition of fetal calf serum (MEM 10) or without serum (MEM 0) were the most efficient virus diluents. Dilution with phosphate-buffered saline, saline, normal broth, or deionized water reduced plaque numbers. Variations in the pH (7.0 to 8.0) of a MEM 0 diluent did not affect plaque numbers. Increasing the volume of viral inoculum above 0.15 ml (15- by 60-mm plate) decreased plaquing efficiency. Significantly more plaques occurred under gum tragacanth and methylcellulose than under agar or agarose overlays. Varying the pH (6.8 to 7.4) of methylcellulose overlays did not significantly change plaque numbers. More plaques formed under the thicker overlays of both methylcellulose and gum tragacanth. Tris(hydroxymethyl)aminomethane and HEPES performed equally well, buffering either medium or overlay. Plaque numbers were reduced when cells were rinsed after virus adsorption or less than 1 h was allowed for adsorption. Variation in adsorption time between 60 and 180 min did not change plaque numbers. The mean plaque formation time was 7 days at 16 degrees C. The viral dose response was linear when the standardized assay was used.  相似文献   

5.
Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus which infects salmon and trout and may cause disease with up to 90% mortality. In the Hagerman Valley of Idaho, IHNV is endemic or epidemic among numerous fish farms and resource mitigation hatcheries. A previous study characterizing the genetic diversity among 84 IHNV isolates at 4 virus-endemic rainbow trout farms indicated that multiple lineages of relatively high diversity co-circulated at these facilities (Troyer et al. 2000 J Gen Virol. 81:2823-2832). We tested the hypothesis that high IHNV genetic diversity and co-circulating lineages are present in aquaculture facilities throughout this region. In this study, 73 virus isolates from 14 rainbow trout farms and 3 state hatcheries in the Hagerman Valley, isolated between 1978 and 1999, were genetically characterized by sequence analysis of a 303 nucleotide region of the glycoprotein gene. Phylogenetic and epidemiological analyses showed that multiple IHNV lineages co-circulate in a complex pattern throughout private trout farms and state hatcheries in the valley. IHNV maintained within the valley appears to have evolved significantly over the 22 yr study period.  相似文献   

6.
A staphylococcal coagglutination test was developed for the rapid detection of infectious hematopoietic necrosis virus (IHNV) in cell cultures and infected fish. The test could be completed in 15 min but required a minimum IHNV titer of 10(6) PFU/ml to obtain a positive reaction. All IHNV isolates, representing the five electropherotypes taken from a wide variety of species and different geographic ranges, caused coagglutination of Staphylococcus aureus cells sensitized with rabbit polyclonal serum against the Round Butte IHNV isolate. The coagglutination reaction was blocked by preincubation of IHNV with homologous antiserum, and IHNV did not cause coagglutination of S. aureus cells sensitized with normal rabbit serum. In specificity tests, cells sensitized with rabbit anti-IHNV serum or normal serum did not coagglutinate in the presence of infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, cell culture medium components, or media from cultures of cell lines of salmonid and nonsalmonid origin. Most importantly, the coagglutination test was able to detect and identify IHNV directly from experimentally infected rainbow trout fry, the organs of naturally infected adult kokanee salmon and winter steelhead trout, and ovarian fluids of the winter steelhead trout. The coagglutination test is very suitable for field use, since it is inexpensive, simple to interpret, sensitive, and rapid and requires no specialized equipment.  相似文献   

7.
A staphylococcal coagglutination test was developed for the rapid detection of infectious hematopoietic necrosis virus (IHNV) in cell cultures and infected fish. The test could be completed in 15 min but required a minimum IHNV titer of 10(6) PFU/ml to obtain a positive reaction. All IHNV isolates, representing the five electropherotypes taken from a wide variety of species and different geographic ranges, caused coagglutination of Staphylococcus aureus cells sensitized with rabbit polyclonal serum against the Round Butte IHNV isolate. The coagglutination reaction was blocked by preincubation of IHNV with homologous antiserum, and IHNV did not cause coagglutination of S. aureus cells sensitized with normal rabbit serum. In specificity tests, cells sensitized with rabbit anti-IHNV serum or normal serum did not coagglutinate in the presence of infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, cell culture medium components, or media from cultures of cell lines of salmonid and nonsalmonid origin. Most importantly, the coagglutination test was able to detect and identify IHNV directly from experimentally infected rainbow trout fry, the organs of naturally infected adult kokanee salmon and winter steelhead trout, and ovarian fluids of the winter steelhead trout. The coagglutination test is very suitable for field use, since it is inexpensive, simple to interpret, sensitive, and rapid and requires no specialized equipment.  相似文献   

8.
9.
A recombinant infectious hematopoietic necrosis virus (IHNV) glycoprotein (G protein), produced in Spodoptera frugiperda (Sf9) cells following infection with a baculovirus vector containing the full-length (1.6 kb) glycoprotein gene, provided very limited protection in rainbow trout Oncorhynchus mykiss challenged with IHNV. Fish were injected intraperitoneally (i.p.) with Sf9 cells grown at 20 degrees C (RecGlow) or 27 degrees C (RecGhigh) expressing the glycoprotein gene. Various antigen (Ag) preparations were administered to adult rainbow trout or rainbow trout fry. Sera collected from adult fish were evaluated for IHNV neutralization activity by a complement-dependent neutralization assay. Anti-IHNV neutralizing activity was observed in sera, but the percent of fish responding was significantly lower (p < 0.05) in comparison to fish immunized with a low virulence strain of IHNV (LV-IHNV). A small number of fish immunized with RecGlow or RecGhigh possessed IHNV G protein specific antibodies (Abs) in their serum. Cumulative mortality (CM) of rainbow trout fry (mean weight, 1 g) vaccinated by i.p. injection of freeze/thawed Sf9 cells producing RecGlow was 18% in initial trials following IHNV challenge. This level of protection was significant (p < 0.05) but was not long lasting, and neutralizing Abs were not detected in pooled serum samples. When trout fry (mean weight, 0.6 g) were vaccinated with supernatant collected from sonicated Sf9 cells, Sf9 cells producing RecGlow, or Sf9 cells producing RecGhigh, CM averaged 46%. Protection was enhanced over negative controls, but not the positive controls (2% CM), suggesting that in the first trial soluble cellular proteins may have provided some level of non-specific protection, regardless of recombinant protein expression. Although some immunity was elicited in fish, and RecGlow provided short-term protection from IHNV, Ab-mediated protection could not be demonstrated. The results suggest that recombinant G proteins produced in insect cells lack the immunogenicity associated with vaccination of fish with an attenuated strain of IHNV.  相似文献   

10.
The double-stranded RNA segments of infectious pancreatic necrosis virus were extracted from virions by a method which avoids proteinase. In contrast to proteinase-treated RNA, such segments (i) exhibited a lower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels and agarose gels, (ii) had a slightly lower buoyant density, and (iii) demonstrated a marked tendency toward aggregation as observed by electron microscopy. A small amount of protein tightly bound to the RNA could account for the above properties, and a 110,000-dalton protein was liberated from purified virion RNA by sequential digestion with RNase III and RNase A. The amount of radioactivity associated with RNA from virions labeled in vivo with [35S]methionine suggested that an average of 1.4 molecules was bound per RNA segment. Interactions between RNA segments seen in electron micrographs appeared to occur only among the ends of the segments, suggesting these were the exclusive sites of protein attachment.  相似文献   

11.
A plaque assay was used to follow the inactivation kinetics of infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in cell culture media at various temperatures. Inactivation of infectious hematopoietic necrosis virus in a visceral organ slurry was compared with that in culture media.  相似文献   

12.
Detection and transmission of Infectious Hematopoietic Necrosis Virus in rainbow trout (Salmo gairdneri) was studied at a commercial trout hatchery. Transmission of virus was demonstrated via water, feed and contaminated eggs. If eggs from carrier females were incubated several weeks in virus-free water, the resulting fry did not become infected. However, if fry subsequently became infected they were lifetime carriers. Infectious virus was readily detectable in most tissues of moribund fish; in carriers it was detected in sex products of spawning fish, and in samples from the intestine of post-spawning fish, but not in samples from blood, feces, kidney, or liver. The carrier rate was not significantly different between sexes. It was concluded that adult carriers are the reservoir of infection and that transmission occurs primarily when carriers shed virus and expose susceptable fish or eggs.  相似文献   

13.
In British Columbia, Canada, infectious hematopoietic necrosis virus (IHNV) is prevalent in wild sockeye salmon Oncorhynchus nerka and has caused disease in seawater net-pen reared Atlantic salmon Salmo salar. In this study, chinook salmon Oncorhynchus tshawytscha experimentally exposed to an isolate of IHNV found in British Columbia became carriers of the virus. When Atlantic salmon were cohabited with these virus-exposed chinook salmon, IHNV was isolated from the Atlantic salmon. Identification of chinook salmon populations that have been exposed to IHNV may be difficult, as virus isolation was successful only in fish that were concurrently infected with either Renibacterium salmoninarum or Piscirickettisia salmonis. Also, IHNV-specific antibodies were detected in only 2 of the 70 fish experimentally exposed to the virus. Two samples collected from chinook salmon exposed to IHNV while at a salt water net-pen site had a seroprevalence of 19 and 22%; however, the inconsistencies between our laboratory and field data suggest that further research is required before we can rely on serological analysis for identifying potential carrier populations. Because of the difficulty in determining the exposure status of populations of chinook salmon, especially if there is no concurrent disease, it may be prudent not to cohabit Atlantic salmon with chinook salmon on a farm if there is any possibility that the latter have been exposed to the virus.  相似文献   

14.
The virion protein patterns of 71 isolates of infectious hematopoietic necrosis virus (IHNV) from the Pacific Northwest were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of [35S]-methionine-labeled virus. This analysis led to the classification of these virus isolates into four or more types. Type 1 virus was characterized by a nucleocapsid protein with an approximate molecular weight of 40,500. Type 2 and type 3 viruses have nucleocapsid proteins with molecular weights of 42,800 and 43,250, respectively. Type 2 virus was responsible for the recent epizootics of IHNV among fish in the lower Columbia River. The California IHNV isolates were type 3 with the exception of some of those isolated from fish at the Coleman Hatchery on the Sacramento River. These Coleman Hatchery isolates belonged to a type 4 virus group characterized by a larger glycoprotein of approximately 70,000 molecular weight. All other viruses examined had glycoproteins of 67,000 molecular weight. The "type 5" virus isolates were grouped together because they were not sufficiently distinct to warrant classification into a separate type. These findings have been useful in determining that a particular virus type is characteristic for a geographic area and will infect many different salmonid species in that area and the same type isolated from parental fish is responsible for the subsequent outbreak of the diseases in progeny.  相似文献   

15.
16.
Forty-two infectious hematopoietic necrosis virus (IHNV) isolates from Alaska were analyzed using the ribonuclease protection assay (RPA) and nucleotide sequencing. RPA analyses, utilizing 4 probes, N5, N3 (N gene), GF (G gene), and NV (NV gene), determined that the haplotypes of all 3 genes demonstrated a consistent spatial pattern. Virus isolates belonging to the most common haplotype groups were distributed throughout Alaska, whereas isolates in small haplotype groups were obtained from only 1 site (hatchery, lake, etc.). The temporal pattern of the GF haplotypes suggested a 'genetic acclimation' of the G gene, possibly due to positive selection on the glycoprotein. A pairwise comparison of the sequence data determined that the maximum nucleotide diversity of the isolates was 2.75% (10 mismatches) for the NV gene, and 1.99% (6 mismatches) for a 301 base pair region of the G gene, indicating that the genetic diversity of IHNV within Alaska is notably lower than in the more southern portions of the IHNV North American range. Phylogenetic analysis of representative Alaskan sequences and sequences of 12 previously characterized IHNV strains from Washington, Oregon, Idaho, California (USA) and British Columbia (Canada) distinguished the isolates into clusters that correlated with geographic origin and indicated that the Alaskan and British Columbia isolates may have a common viral ancestral lineage. Comparisons of multiple isolates from the same site provided epidemiological insights into viral transmission patterns and indicated that viral evolution, viral introduction, and genetic stasis were the mechanisms involved with IHN virus population dynamics in Alaska. The examples of genetic stasis and the overall low sequence heterogeneity of the Alaskan isolates suggested that they are evolutionarily constrained. This study establishes a baseline of genetic fingerprint patterns and sequence groups representing the genetic diversity of Alaskan IHNV isolates. This information could be used to determine the source of an IHN outbreak and to facilitate decisions in fisheries management of Alaskan salmonid stocks.  相似文献   

17.
C H Kim  J R Winton    J C Leong 《Journal of virology》1994,68(12):8447-8453
Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus that causes an acute disease in salmon and trout. In this study, a correlation between changes in tissue tropism and specific changes in the virus genome appeared to be made by examining four IHNV neutralization-resistant variants (RB-1, RB-2, RB-3, and RB-4) that had been selected with the glycoprotein (G)-specific monoclonal antibody RB/B5. These variants were compared with the parental strain (RB-76) for their virulence and pathogenicity in rainbow trout after waterborne challenge. Variants RB-2, RB-3, and RB-4 were only slightly attenuated and showed distributions of viral antigen in the livers and hematopoietic tissues of infected fish similar to those of the parental strain. Variant RB-1, however, was highly attenuated and the tissue distribution of viral antigen in RB-1-infected fish was markedly different, with more viral antigen in brain tissue. The sequences of the G genes of all four variants and RB-76 were determined. No significant changes were found for the slightly attenuated variants, but RB-1 G had two changes at amino acids 78 and 218 that dramatically altered its predicted secondary structure. These changes are thought to be responsible for the altered tissue tropism of the virus. Thus, IHNV G, like that of rabies virus and vesicular stomatitis virus, plays an integral part in the pathogenesis of viral infection.  相似文献   

18.
We developed a suicidal DNA vaccine (pIRF1A-G-pMT-M) for salmonid fish susceptible to Infectious Hematopoietic Necrosis Virus (IHNV). The suicidal vaccine consists of two operons: i) an inducible fish promoter, the interferon regulatory factor 1A promoter (pIRF1A), driving the expression of the IHNV viral glycoprotein (G) gene that induces protection, and ii) a ZnCl(2) inducible fish promoter, the metallothionein promoter (pMT), driving the expression of the IHNV matrix (M) protein that induces apoptosis. The vaccine induces an immune response to the G protein and then induces the cell to undergo apoptosis to eliminate the DNA vaccine-containing cell. Also developed is another suicidal construct (pCMV-luc-pMT-M) for monitoring the persistence of luciferase (luc) expression after induction of apoptosis. In this study, we evaluated the inducibility of the MT promoter with ZnCl(2) and the capacity of cells transfected with the suicidal vector pCMV-luc-pMT-M to undergo apoptosis after ZnCl(2) addition. We also demonstrated the protective immunity elicited by the suicidal DNA vaccine pIRF1A-G-pMT-M, the survival of fish after treatment with ZnCl(2), and the elimination of the suicidal vector in fish after ZnCl(2) treatment.  相似文献   

19.
Infectious hematopoietic necrosis virus (IHNV) is a highly contagious disease of juvenile salmonid species. However, robust anti-IHNV drugs currently are extremely scarce. For the purpose of seeking out anti-IHNV drugs, here a total of 24 coumarin derivatives are designed, synthesized and evaluated for their anti-viral activities. By comparing the half maximal inhibitory concentrations (IC50) of the 12 screened candidate drugs in epithelioma papulosum cyprini (EPC) cells infected with IHNV, the imidazole coumarin derivative C4 is selected for additional validation studies, with an IC50 of 2.53 μM at 72 h on IHNV glycoprotein. Further experiments revealed that C4 could significantly inhibit apoptosis and cellular morphological damage induced by IHNV. On account of these findings, derivative C4 could be a viable way of controlling IHNV and considered as a promising lead compound for the development of commercial drugs.  相似文献   

20.
The glycoprotein of infectious hematopoietic necrosis virus was truncated to ten overlapping fragments. All fragments were displayed on the inner membrane of the Escherichia coli periplasm. After disruption of the outer membrane, spheroplasts that had anchored with the glycoprotein fragment were incubated with an anti-glycoprotein polyclonal antibody. Prey pairs were detected and quantitated by flow cytometry with all fragments but one, G2, reacting with the polyclonal antibody. The antigenicity of all ten fragments was analyzed using conventional methods, and epitopes were localized in all fragments, except for G2 and were consistent with FCM analysis. Antigenicity of purified glycoprotein fusion proteins was confirmed by western blotting and ELISA. This method provides a rapid, quantitative and simple strategy for identifying linear B cell epitopes of a given protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号