首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight different strains ofBacillus were isolated from fermented fish (Budu) and their proteolytic enzyme activities were determined after 18 h cultivation at room temperature (35° C). Four isolates possessed high protease activities. Optimum pH for these enzymes was between 7.0 and 8.0 and the optimal temperature was 55° C. The proteases retained 40% of their original activity after 20 min at 55° C but lost all activity at 65° C. Three of the four isolates were identified asBacillus subtilis, the fourth asBacillus licheniformis.  相似文献   

2.
High activities of extracellular pectinase with viscosity-diminishing and reducing groups-releasing activities were produced by Penicillium frequentans after 48 h at 35°C, in agitated cultures supplemented with 0.5% citrus pectin and initial pH of 2.5. Under these conditions the fungus also produced high activity of pectinesterase. At an initial pH of 7.0 or 8.0, pectin lyase activity was also detected. Enzyme activity releasing reducing sugars was more stable at 50°C than viscosity-diminishing activity. Both activities were maximal at pH 2.5 to 5.2 and at 55°C.The authors are from the Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo, Avenida do Café, s/no, Bairro Monte Alegre, 14.049 Ribeirão Preto, S.P., Brazil.  相似文献   

3.
Summary 3-cyanopyridine was hydrated to nicotinamide by whole cells ofBrevibacterium R-312 containing nitrile hydratase. Cells used for kinetic studies had an initial activity of 0.30 mg nicotinamide/mg cells(dry)-min and storage half-lives (pH 8) of approximately 100 days, 10 days, 5 days and less than 1 day at 4°C, 10°C, 25°C, and 30°C respectively. Temperature and pH maxima were 35°C and 8.0, respectively. Fermentations gave a maximum total hydratase activity of 1.25 mg nicotinamide/min, but at this maximum the amidase activity was unacceptably high (25% of the hydratase activity): nicotinamide was converted too rapidly to nicotinic acid. But systematic fermentation studies (7 1) showed that harvesting at mid-log phase (18–20 h) prior to the attainment of maximum total activity gave reasonably high levels of hydratase (0.3 mg nicotinamide/mg cells-min) and acceptable levels of amidase (0.03 mg nicotinic acid/mg cells-min).  相似文献   

4.
Wang QF  Miao JL  Hou YH  Ding Y  Wang GD  Li GY 《Biotechnology letters》2005,27(16):1195-1198
Colwellia sp. NJ341, isolated from Antarctic sea ice, secreted a cold-active serine protease. The purified protease had an apparent Mr of 60 kDa by SDS-PAGE and MALDI-TOF MS. It was active from pH 5–12 with maximum activity at 35 °C (assayed over 10 min). Activity at 0 °C was nearly 30% of the maximum activity. It was completely inhibited by phenylmethylsulfonyl fluoride.  相似文献   

5.
Some properties of an extracellular lipase produced byLactobacillus delbrueckii subsp.bulgaricus were studied. Maximum enzyme activity was found against olive and butter oil as enzyme substrates. Addition of 9% acacia gum, 0.1% Na-deoxycholate and 0.01 M CaCl2 to the enzyme reaction mixture increased-lipase activity from 5.3 to 14.5 (FFA/mg protein/minute) at pH 6.0 and at 40° C. Maximum lipase production was reached in the presence of glucose as a sole source of carbon, wheat bran as nitrogen source, olive oil as a sole lipid source and butyric acid as fatty acid supporting the growth medium. An initial pH value of the culture medium of 6.0 and a temperature of 35° C gave the highest lipolytic activity.  相似文献   

6.
An intracellular lipase was induced inAspergillus flavipes grown on various triacylglycerols at pH 6.0 and at 30°C, with maximum activity with sunflower oil. The lipase had an optimum pH for activity of 8.8 and retained 30% of its activity at pH 10.0. It had an optimum temperature for activity, measured over 30 min, of 45°C. It was completely inactivated at 60°C within 10 min.  相似文献   

7.
Oospore germination occurred over a temperature ranging of 15–35°C forPythium coloratum, 10–35°C forP. diclinum, 15–30°C forP. dissotocum, 7–30°C forP. monospermum, and 10–30°C forP. pleroticum. Optimum temperature was 25°C for all species tested. In case of pH, oospore germination occurred over a range of 4.76–8.55 with an optimum of 6.40–7.40. The least germination occurred at pH 4.76 forP. coloratum, P. diclinum, P. monospermum andP. pleroticum, whileP. dissotocum germinated from pH 5.02. Oospores of the all tested pythia were able to germinate at –0.13 to –1.65 MPa and could not germinate at –3.40 MPa, with the highest germination rate at –0.27 to –0.47 MPa. The effect of temperature, pH and osmotic potential on oospore germination was discussed in relation to pollution of pond water.  相似文献   

8.
Pichia anomala, isolated from dried flower buds of Woodfordia fruticosa, produced a high activity of an intracellular phytase, at 68 U per g dry biomass, when grown at 20 °C for 24 h in a medium containing glucose (40 g l–1) and beef extract (10 g l–1) supplemented with Fe2+ (0.15 mM). Partially purified phytase was optimally active at 60 °C and pH 4 with a half life of 7 days at 60 °C. It retained 85% of its activity at 80 °C for 15 min. The enzyme is suitable for supplementing animal feeds to improve the availability of phosphate from phytate.  相似文献   

9.
This study reassesses the proposal that cellular conditions of low temperature and relative acidosis during hibernation contribute to a suppression of phosphofructokinase (PFK) activity which, in turn, contributes to glycolytic rate suppression during torpor. To test the proposal that a dilution effect during in vitro assay of PFK was the main reason for activity loss (tetramer dissociation) at lower pH values, the influence of the macromolecular crowding agent, polyethylene glycol 8000 (PEG), on purified skeletal muscle PFK from Spermophilus lateralis was evaluated at different pH values (6.5, 7.2 and 7.5) and assay temperatures (5, 25 and 37°C). A 78 ± 2.5% loss of PFK activity during 1 h incubation at 5°C and pH 6.5 was virtually eliminated when 10% PEG was present (only 7.0 ± 1.5% activity lost). The presence of PEG also largely reversed PFK inactivation at pH 6.5 at warmer assay temperatures and reversed inhibitory effects by high urea (50 or 400 mM). Analysis of pH curves at 5°C also indicated that ~ 70% of activity would remain at intracellular pH values in hibernator muscle. The data suggest that under high protein concentrations in intact cells that the conditions of relative acidosis, low temperature or elevated urea during hibernation would not have substantial regulatory effects on PFK.  相似文献   

10.
1444 microorganisms were isolated from soil samples from the northern Thai and screened at 55 °C by using basal medium supplemented with 1% carboxymethyl cellulose as a sole carbon source. One isolate, Streptomyces Ab106, had a high activity of a cellulase-free xylanase also without mannanase activity. The maximum cellulase-free xylanase activities of 3.5, 3.3, 3.1 and 2.7 IU were after growth of the organism with 1% (w/v) corn hull, corncob, bagasse and oat spelt xylan, respectively, at 55 °C for 6 days, respectively. The activity was more than 5 times higher than that at 35 °C.  相似文献   

11.
A thermotolerant fungal strainAspergillus terreus produced high activities of cellulolytic enzymes when grown in shake flasks for 8 days at 40°C or 14 days at 28°C in medium containing 2.5% (w/v) cellulose powder and 1% (w/v) wheat bran. There was little difference between the final activities of endo-(1,4)--glucanase (ca. 14.4 U/ml); filter paper activity (ca. 1.3 U/ml) and -glucosidase (ca. 10 U/ml). Endoglucanase had maximum activity at 60°C and pH 3.8; the other two enzymes were optimal at 60°C and pH 4.8. The maximum hydrolysis of different cellulosic substrates (about 50%) was obtained within 48 h when 1.1 U/ml of filter paper cellulase activity were employed to saccharify 100 mg alkali-treated cotton, filter paper, bagasse, and rice straw at 50°C and pH 4.8. The major end-product, glucose, was produced from all substrates, with traces of cellobiose and other larger oligosaccharides being present in rice straw hydrolysates.  相似文献   

12.
Colletotrichum lindemuthianum isolated from soybean in Saudi Arabia produced polygalacturonase, pectin methylesterase, pectin trans-eliminase and carboxymethylcellulasein vitro. Polygalacturonase showed maximaum activity at 30 to 35°C and pH 4.0 to 5.0. The absorption maximum for pectin trans-eliminase reaction products was at approximately 548 nm. The polygalacturonase and pectin trans-eliminase activities increased with culture age. The degradation of carboxymethylcellulose was also demonstrated.  相似文献   

13.
An extracellular serine proteinase, lap2, from the psychrophilic antarctic yeast Leucosporidium antarcticum 171 was purified to homogeneity and characterized. The enzyme is a glycoprotein with a molecular mass of 34.4 kDa and an isoelectric point of pH 5.62. The proteinase is halotolerant, and its activity and stability are dependent neither on Ca2+ nor on other metal ions. Lap2 is a true psychrophilic enzyme because of low optimal temperature (25°C), poor thermal stability, relatively small values of free energy, enthalpy and entropy of activation, and high catalytic efficiency at 0–25°C. The 35 N-terminal amino acid residues of lap2 have homology with subtilases of the proteinase K subfamily (clan SB, family S8, subfamily C). The proteinase lap2 is the first psychrophilic subtilase in this family.Communicated by K. Horikoshi  相似文献   

14.
15.
Development rates were determined for three pteromalid parasitoids of houseflies under constant and varying temperatures from 15 to 35°C.Muscidifurax raptorGirault and Sanders was the fastest developing species, with females completing development in 13.8 days at 32.5°C and 66.5 days at 15°C.Spalangia geminaBoucek females completed development in 20.8 days at 30.0°C and 161 days at 15.0°C, whereasS. cameroniPerkins females completed development in 20.6 days at 30.0°C and 155.5 days at 15.0°C. Male development times were 90.3% of those for femaleS. geminaand 92.7 and 88.6% of those for femaleS. cameroniandM. raptor,respectively. Parasitoid survival was very low at 35°C for all species and noSpalangiasurvived constant exposure to 15.0°C. Exposure to these lethal temperatures for shorter periods indicated that the parasitoids can tolerate them well under conditions more typical of the field. Development rates were modeled using biophysical and degree-day models and the models were tested for their ability to predict development under fluctuating conditions (24–36°C). Neither model was superior for all three species because of interspecific differences in the parasitoids' responses to high temperatures. Agreement between predicted and observed development times for all three species was achieved by small empirical adjustments of a key parameter in the biophysical model.  相似文献   

16.
The removal of phenol by peroxidase-catalysed polymerization was examined using purified Coprinus cinereus peroxidase. The phenol removal efficiency increased with a decrease in the reaction temperature over the range of 0–70 °C, though only a trace of enzyme activity with 4-aminoantipyrine (4-AAP), phenol and hydrogen peroxide was found at 0 °C. The optimum pH value for phenol removal was 9.0, while the enzyme expressed maximum activity at pH 7.5 in the presence of 4-AAP, phenol and hydrogen peroxide. By measuring residual enzyme activity in the polymerizing reaction mixture, it was shown that enzyme inactivation by free radicals was more suppressed at 0 °C than at 40 °C and that the adsorption of the enzyme on the polymerized precipitate was more suppressed at pH 9.0 than that at pH 7.5.  相似文献   

17.
At oxygen concentrations below air saturation, R.Q. and A.Q. values of Tilapia mossambica increase with decrease in ambient oxygen at 30 and 35°C, indicating an increase in anaerobic metabolism and protein utilization. The recovery metabolism indicates that T. mossambica accumulates an oxygen debt at 30°C, which was not obvious at 35°C. The post-hypoxic oxygen consumption at 30°C is quite pronounced and the fish repays almost wholly the oxygen debt accumulated. At 30°C, R.Q. and A.Q. reach prehypoxic level immediately after exposure to high oxygenated water. In contrast to this, during recovery the first high R.Q. which is higher than unity and subsequent low R.Qs., almost as low as 0.5, suggest respectively that, anaerobic energy utilization persists and carbon dioxide is retained. The differences in the recovery metabolism of T. mossambica at the two temperatures may be due to changes in metabolism and pathways due to temperature. The recovery metabolism of T. mossambica suggests that energy derived anaerobically could proceed through other pathways than the conventional glycolytic way. The decrease in random activity during the hypoxic phase at 30 and 35°C may have a special significance for survival.From a thesis (M.P.M.) approved for the degree of Doctor of Philosophy, Madurai University, Madurai, India.From a thesis (M.P.M.) approved for the degree of Doctor of Philosophy, Madurai University, Madurai, India.  相似文献   

18.
Summary A β-galactosidase from Thermotoga maritima produced galacto-oligosaccharides (GOS) from lactose by transgalactosylation when expressed in Escherichia coli. The enzyme activity for GOS production was maximal at pH 6.0 and 90 °C. In thermal stability experiments, the enzyme followed first-order kinetics of pH and thermal inactivation, and half-lives at pH 5.0, pH 8.0, 80 °C, and 95 °C were 27 h, 82 h, 41 h, and 14 min, respectively, suggesting that the enzyme was stable below 80 °C and in the pH range of 5.0–8.0. Mn2+ was the most effective divalent cation for GOS production. Cu2+ and EDTA inhibited more than 84% of enzyme activity. GOS production increased with increasing lactose concentrations and peaked at 500 g lactose/l. Among tested enzyme concentrations, the highest production of GOS was obtained at 1.5 units enzyme/ml. Under the optimal conditions of pH 6.0, 80 °C, 500 g lactose/l, and 1.5 units enzyme/ml, GOS production was 91 g/l for 300 min, with a GOS productivity of 18.2 g/l · h and a conversion yield of GOS to lactose of 18%.  相似文献   

19.
Optimizing production of extracellular lipase fromRhodotorula glutinis   总被引:1,自引:0,他引:1  
Production of extracellular lipase byRhodotorula glutinis was substantially enhanced when the type and concentration of carbon and nitrogen source, the initial pH of culture medium and the growth temperature were consecutively optimized. Lipase activity as high as 30.4 U/ml of culture medium was obtained at optimum conditions, comparing favourably with most of the activities reported for other lipase hyperproducing microorganisms. The enzyme was optimally active at pH 7.5 and 35°C and had, at optimum pH, half-lives of 45 and 11.8 min at 45 and 55°C respectively. The high activity and kinetic characteristics of the enzyme make this process worthy of further investigation.  相似文献   

20.
Survival and tolerance at cold temperatures, the differentially expressed cellular proteins, and cholera toxin (CTX) production were evaluated in Vibrio cholerae O1. Rapid loss of culturability and change to distinct coccoid morphology occurred when cultures of V. cholerae O1 were exposed to 5°C directly from 35°C. Also, cultures of V. cholerae first exposed to 15°C for 2 h and then maintained at 5°C failed to exhibit an adaptive response, instead a rapid loss of viable plate count was noticed. Results from Western blot experiments revealed the absence of a major cold shock protein, CS7.4. Also, a decreased level of CTX was noticed in V. cholerae O1 cultures exposed to 5 or 15°C after first being exposed to 15°C for 2 h, followed by transfer to 5°C. Reduced expression of CTX at cold temperatures, compared to the cultures maintained at 35°C, may be a result of decreased cellular metabolic activity. When V. cholerae O1 cultures were exposed to 15°C for 2 h, elevated expressions of 8, 26 and 194 kDa, and decreased expression of 28 and 183 kDa proteins occurred. It is suggested that these differentially expressed cold-responsive proteins are involved in regulating culturability and conversion to a coccoid cell morphology in V. cholerae O1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号