首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1-Pyrenebutyric acid (PBA) is a fluorescent probe whose fluorescence lifetime depends on local oxygen and free radical concentrations. We propose to use PBA fluorescence lifetime to quantify reactive oxygen species (ROS) in biological samples. Time-resolved microfluorimetry was used to record the fluorescence decay of single living cells loaded with this probe. We measured intracellular PBA fluorescence lifetimes and reduced nicotinamide adenine dinucleotide phosphate intensities under various oxygen concentrations. To confirm the feasibility of the new method, CCRF-CEM cells were treated with drugs that are known to increase or decrease ROS production. After treatment with adriamycin, we observed a decrease of PBA fluorescence lifetime. This corresponded to an increase of ROS concentration (80%). After treatment with cysteamine, we observed a reduction of the ROS concentration by 67%. Moreover, addition of exogenous H(2)O(2) solution resulted in a decrease of PBA fluorescence lifetime due to a raising of the intracellular ROS concentration. These results support our hypothesis linking a part of PBA fluorescence lifetime variations to intracellular fluctuation of ROS.  相似文献   

2.
Oxidative phosphorylation and glycolysis are important features, by which cells could bypass oxidative stress. The level of oxidative stress, and the ability of cells to promote oxidative phosphorylation or glycolysis, significantly determined proliferation or cell demise. In the present work, we have employed selective mitochondrial probe MitoTracker? Orange CMTM/Ros (MTO) to estimate the level of oxidative stress in cancer cells at different stressed conditions. MTO is partially sensitive to decrease of mitochondrial membrane potential and to reactive oxygen species (ROS) generated in mitochondria. We have demonstrated, that fluorescence lifetime of MTO is much more sensitive to oxidative stress than intensity-based approaches. This method was validated in different cancer cell lines. Our approach revealed, at relatively low ROS levels, that Gö 6976, a protein kinase C (PKC) α inhibitor, and rottlerin, an indirect PKCδ inhibitor, increased mitochondrial ROS level in glioma cell. Their involvement in oxidative phosphorylation and apoptosis was investigated with oxygen consumption rate estimation, western blot and flow-cytometric analysis. Our study brings new insight to identify feeble differences in ROS production in living cells.  相似文献   

3.
Tumour hypoxia plays a role in chemoresistance in several human tumours. However, how hyperbaric oxygen leads to chemotherapeutic gain is unclear. This study investigates the relation of reactive oxygen species (ROS) generation with anti-tumoural effect of adriamycin (ADR) on CCRF-CEM cells under hypoxic (2% O2) and normoxic (21% O2) conditions. A new method was used to measure intracellular ROS variations through the fluorescence lifetime of 1-pyrenebutyric acid. At 24 h, ADR, probably via semiquinone radical, enhances ROS levels in normoxic cells compared to hypoxic cells. Long-term studies show that ROS are also generated by a second mechanism related to cell functions perturbation. ADR arrests the cell cycle progression both under hypoxia and normoxia, indicating that oxygen and ROS does not influence the DNA damaging activity of ADR. The findings reveal that moderate improvement of ADR cytotoxicity results from higher ROS formation in normoxic cells, leading to elevated induction of cell death.  相似文献   

4.
Tumour hypoxia plays a role in chemoresistance in several human tumours. However, how hyperbaric oxygen leads to chemotherapeutic gain is unclear. This study investigates the relation of reactive oxygen species (ROS) generation with anti-tumoural effect of adriamycin (ADR) on CCRF-CEM cells under hypoxic (2% O2) and normoxic (21% O2) conditions. A new method was used to measure intracellular ROS variations through the fluorescence lifetime of 1-pyrenebutyric acid. At 24 h, ADR, probably via semiquinone radical, enhances ROS levels in normoxic cells compared to hypoxic cells. Long-term studies show that ROS are also generated by a second mechanism related to cell functions perturbation. ADR arrests the cell cycle progression both under hypoxia and normoxia, indicating that oxygen and ROS does not influence the DNA damaging activity of ADR. The findings reveal that moderate improvement of ADR cytotoxicity results from higher ROS formation in normoxic cells, leading to elevated induction of cell death.  相似文献   

5.
As a high reactive oxygen species (ROS) and a reactive nitrogen species (RNS), peroxynitrite anion (ONOO) is widely present in organisms and plays influential roles in physiological and pathological processes. It is of great significance to develop effective fluorescent probes for imaging peroxynitrite variation in living systems. Herein we present a novel fluorescent probe TQC0 for monitoring ONOO based on the iminocoumarin platform, and this probe was synthesized by the knoevenagel condensation between a dihydropyridine-salicylaldehyde derivative and 2-benzothiazole-acetonitrile, and subsequently masked with the boronate moiety. The obtained probe TQC0 exhibited a high signal-to-noise ratio (206-fold) and a quick ‘turn-on’ response (about 10 min) with great selectivity and sensitivity. Furthermore, the probe TQC0 was successfully applied for imaging ONOO in living cells with low cytotoxicity.  相似文献   

6.
Isolated mitochondria respiring on physiological substrates, both in state 4 and 3, are reported to be or not to be a source of reactive oxygen species (ROS). The cause of these discrepancies has been investigated. As protein concentration was raised in in vitro assays at 37°C, the rate of H2O2 release by rat heart mitochondria supplemented with pyruvate/malate or with succinate (plus rotenone) was shown to increase (0.03-0.15 mg protein/ml), to decrease (0.2-0.5 mg protein/ml) and to be negligible (over 0.5 mg protein/ml). The inhibition of mitochondrial respiration (with rotenone or antimycin A) or the increase in the oxygen concentration dissolved in the assay medium allowed an enhancement of ROS production rate throughout the studied range of protein concentrations. In mitochondria respiring in state 3 on pyruvate/malate or on succinate (plus rotenone), ROS release vanished for protein concentrations over 0.5 or 0.2 mg/ml, respectively. However, ROS production rates measured with low protein concentrations (below 0.1 mg/ml) or in oxygen-enriched media were similar or even slightly higher in the active respiratory state 3 than in the resting state 4 for both substrates. Consequently, these findings indicate that isolated mitochondria, respiring in vitro under conditions of forward electron transport, release ROS with Complex I- and II-linked substrates in the resting condition (state 4) and when energy demand is maximal (state 3), provided that there is sufficient oxygen dissolved in the medium.  相似文献   

7.
We report the results of a study on generation of reactive oxygen species (ROS) and changes in the membrane potential of mitochondria of carcinoma of cervix (HeLa) and Chinese hamster ovary (CHO) cells following exposure to continuous wave (cw) or pulsed Nd: YAG laser (1064 nm). For a given laser irradiation, the generation of ROS and induced changes in the membrane potential of mitochondria were more pronounced for HeLa cells as compared to CHO cells. However, in both the cells the laser dose required to elicit a given change was much lower with pulsed laser exposure compared to that required with a cw laser exposure. This suggests involvement of photothermal effects in the laser irradiation induced changes. Mechanistic studies using quenchers for ROS suggest that laser irradiation leads to generation of hydroxyl radicals.  相似文献   

8.
HBx (hepatitis B virus X) viral oncoprotein is a multifunctional protein of which the cellular level may be one of the important factors in determining HBV-mediated pathological progression of liver diseases, chronic hepatitis, and hepatocellular carcinoma. Our previous work revealed that adriamycin, a chemotherapeutic agent, caused a marked increase in the intracellular level of HBx by retarding its rapid degradation. In the present study, modulation of HBx expression was found to be confined to adriamycin but not to other chemotherapeutic agents, cisplatin and 5-fluorouracil. Interestingly, adriamycin caused a rapid increase of reactive oxygen species (ROS) and its accumulation continued until 24h. In contrast, two other agents had little effect on ROS generation, suggesting the possible involvement of ROS in the HBx regulation. In fact, direct addition of H(2)O(2) to the cells significantly increased the level of HBx protein in HBx-expressing ChangX-34 cells as well as in hepatitis B virus-related hepatoma cells, PLC/PRF/5 and HepG2.2.15 cells. Furthermore, antioxidants, N-acetyl-cysteine and pyrrolidinedithiocarbamate (PDTC), completely abolished the increase of HBx protein induced by adriamycin, indicating that adriamycin modulates the intracellular HBx level via ROS generation. Together, these findings provide a novel aspect of HBx regulation by cellular ROS level. Therefore, intracellular microenvironments generating ROS such as severe inflammation may aggravate the pathogenesis of liver disease by accumulating the HBx level.  相似文献   

9.
We have investigated the roles of reactive oxygen species (ROS) in bleomycin (BLM)-induced gene mutations in Chinese hamster ovary (CHO) cells using a superoxide dismutase (SOD) inhibitor, triethylenetetramine (TRIEN), and a SOD mimic, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), to lower and increase intracellular “SOD activity”, respectively. Pretreatment of CHO cells with TRIEN (1 mM) for 1 h enhanced the mutagenic response of BLM (5–50 μg/ml, 1 h treatment) in the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in CHO cell clone K1-BH4 (CHO/HPRT assay) and the xanthine-guanine phosphoribosyltransferase (gpt) gene in a CHO-K1 cell derivative AS52 (AS52/GPT assay). Pretreatment with TEMPOL (1 mM) for 1 h decreased the BLM (20–100 μg/ml, 1 h treatment) mutagenicity in the AS52/GPT assay. The mutagenic response of BLM appears to be modulated by the intracellular level of ‘SOD activity’ and hence the intracellular level of ROS. These data provide further evidence for the involvement of ROS in bleomycin mutagenesis in mammalian cells.  相似文献   

10.
Reactive oxygen species (ROS) and antioxidants are essential to maintain a redox balance within tissues and cells. Intracellular ROS regulate key cellular functions such as proliferation, differentiation and apoptosis through cellular signaling, and response to injury. The redox environment is particularly important for stem/progenitor cells, as their self-renewal and differentiation has been shown to be redox sensitive. However, not much is known about ROS and antioxidant protein function in freshly isolated keratinocytes, notably the different keratinocyte subpopulations. Immunostaining of neonatal cutaneous sections revealed that antioxidant enzymes [catalase, SOD2, gluthatione peroxidase-1 (GPx)] and ROS are localized predominantly to the epidermis. We isolated keratinocyte subpopulations and found lower levels of SOD2, catalase and GPx, as well as decreased SOD and catalase activity in an epidermal side population with stem cell-like characteristics (EpSPs) compared to more differentiated (Non-SP) keratinocytes. EpSPs also exhibited less mitochondrial area, fewer peroxisomes and produced lower levels of ROS than Non-SPs. Finally, EpSPs were more resistant to UV radiation than their progeny. Together, our data indicate ROS and antioxidant levels are decreased in stem-like EpSPs.  相似文献   

11.
A catheter-type optical oxygen sensor based on phosphorescence lifetime was developed for medical and animal experimental use. Since the sensor probe should have biocompatibility and high oxygen permeability in vivo, we focused attention on acceptable polymer materials for contact lenses as the substrates of probes. Pd-porphyrin was doped in silicone-based polymer, and was fixed at the edge of an optical fiber inserted in a catheter tube. The shape of the probe was 600 μm in diameter and 100 μm in thickness, and the probe had high oxygen permeability of Dk value 455. In accuracy evaluation, there found an excellent correlation between the pO2 values measured through phosphorescence lifetime using the oxygen sensors and those measured as the calibrating data using oxygen electrodes. The response time required to achieve 90% from reversible default value to be from 150 to 0 mmHg, and from 0 to 150 mmHg was 15.43 and 7.52 s, respectively. In addition, other properties such as temperature and pH dependency, response, and durability of our optical oxygen sensor were investigated. In animal experiments, the catheter-type oxygen sensor was inserted via the femoral artery of a rat, and arterial oxygen pressure was monitored under asphyxiation. The sensor was valid in the range of oxygen concentration sufficient for biometry, and expected to be integrated with an indwelling needle.  相似文献   

12.
We reported previously that freshly fractured silica (FFSi) induces activator protein-1 (AP-1) activation through extracellular signal-regulated protein kinases (ERKs) and p38 kinase pathways. In the present study, the biologic activities of FFSi and aged silica (ASi) were compared by measuring their effects on the AP-1 activation and phosphorylation of ERKs and p38 kinase. The roles of reactive oxygen species (ROS) in this silica-induced AP-1 activation were also investigated. We found that FFSi-induced AP-1 activation was four times higher than that of ASi in JB6 cells. FFSi also caused greater phosphorylation of ERKs and p38 kinase than ASi. FFSi generated more ROS than ASi when incubated with the cells as measured by electron spin resonance (ESR). Studies using ROS-sensitive dyes and oxygen consumption support the conclusion that ROS are generated by silica-treated cells. N-Acetylcysteine (an antioxidant) and polyvinyl pyridine-N-oxide (an agent that binds to Si-OH groups on silica surfaces) decreased AP-1 activation and phosphorylation of ERKs and p38 kinase. Catalase inhibited phosphorylation of ERKs and p38 kinase, as well as AP-1 activation induced by FFSi, suggesting the involvement of H(2)O(2) in the mechanism of silica-induced AP-1 activation. Sodium formate (an ( small middle dot)OH scavenger) had no influence on silica-induced MAPKs or AP-1 activation. Superoxide dismutase enhanced both AP-1 and MAPKs activation, indicating that H(2)O(2), but not O(2), may play a critical role in silica-induced AP-1 activation. These studies indicate that freshly ground silica is more biologically active than aged silica and that ROS, in particular H(2)O(2), play a significant role in silica-induced AP-1 activation.  相似文献   

13.
Production of reactive oxygen and nitrogen species (ROS/RNS) is an important part of the inflammatory response, but prolonged elevated levels of ROS/RNS as under chronic inflammation can contribute to the development of disease. Monitoring ROS/RNS in living animals is challenging due to the rapid turnover of ROS/RNS and the limited sensitivity and specificity of ROS/RNS probes. We have explored the use of the chemiluminescent probe L-012 for noninvasive imaging of ROS/RNS production during inflammation in living mice. Various inflammatory conditions were induced, and L-012-dependent luminescence was recorded with an ultrasensitive CCD camera. Strong luminescent signals were observed from different regions of the body corresponding to inflammation. The signal was reduced by administration of the SOD mimetic tempol, the NADPH oxidase inhibitor apocynin, and the inhibitor of nitric oxide synthesis L-NAME, signifying the requirement for the presence of ROS/RNS. Additionally, the L-012 signal was abolished in mice with a mutation in the Ncf1 gene, encoding a protein in the NADPH oxidase complex 2, which generates ROS/RNS during inflammation. In conclusion, L-012 is well distributed in the mouse body and mediates a strong ROS/RNS-dependent luminescent signal in vivo and is useful for monitoring the development and regulation of inflammation in living organisms.  相似文献   

14.
Reactive oxygen species (ROS) are reportedly associated with gastric ulcer. We previously reported the use of an in vivo 300-MHz electron spin resonance (ESR) spectroscopy/nitroxyl probe technique to detect OH generation in the stomachs of rats with gastric ulcers induced by NH4OH. However, this is an acute ulcer model, and the relationship between in vivo ROS generation and lesion formation remains to be clarified. To address this question, the same technique was applied to a sub-acute water immersion restraint (WIR) model. A nitroxyl probe that was less membrane-permeable was orally administered to WIR-treated rats, and the spectra in the gastric region were obtained by in vivo ESR spectroscopy. The signal intensity of the orally administered probe was clearly changed in the WIR group, but no change occurred in the control group. Both enhanced signal decay and neutrophil infiltration into mucosa were observed 2 h after WIR with little formation of any mucosal lesions. The enhanced signal decay was caused by OH generation, based on the finding that the decay was suppressed by mannitol, desferrioxamine and catalase. Intravenous treatment with either anti-neutrophil antibody or allopurinol also suppressed the enhanced signal decay, and allopurinol depressed neutrophil infiltration into the mucosa. In rats treated with WIR for 6 h, lesion formation was suppressed by 50% with all antioxidants used in this experiment except anti-neutrophil antibody. These findings suggest that OH, which is generated in the stomach via the hypoxanthine/xanthine oxidase system upon neutrophil infiltrated into the mucosa, induces mucosal lesion formation, but that it accounts for only half the cause of lesion formation.  相似文献   

15.
Derepression of nitrogenase gene expression was studied at the mRNA and enzyme activity levels in anaerobic cultures of Anabaena variabilis 29413. Cells, previously grown with ammonium chloride, were incubated in the absence of fixed nitrogen compounds under an Ar atmosphere with dichlorophenyldimethyl-urea present to inhibit oxygen evolution. The appearance of nitrogenase mRNA (measured by dot blot hybridization analysis) and nitrogenase activity (measured as acetylene-reducing activity) was followed, and the cells were also observed by phase-contrast microscopy. Nitrogenase mRNA could be detected after 1.5 to 2.0 h of nitrogen starvation; enzyme activity appeared about 1 h later. Although enzyme activity increased for many hours, mRNA levels reached a steady state rapidly. Neither heterocysts nor proheterocysts formed under these conditions; however, the cells were observed to shrink and become chlorotic. When anaerobic, derepressed cultures were exposed to oxygen, nitrogenase mRNA levels decreased very rapidly.  相似文献   

16.
Continuous exposure of breast cancer cells to adriamycin induces high expression of P-gp and multiple drug resistance. However, the biochemical process and the underlying mechanisms for the gradually induced resistance are not clear. To explore the underlying mechanism and evaluate the anti-tumor effect and resistance of adriamycin, the drug-sensitive MCF-7S and the drug-resistant MCF-7Adr breast cancer cells were used and treated with adriamycin, and the intracellular metabolites were profiled using gas chromatography mass spectrometry. Principal components analysis of the data revealed that the two cell lines showed distinctly different metabolic responses to adriamycin. Adriamycin exposure significantly altered metabolic pattern of MCF-7S cells, which gradually became similar to the pattern of MCF-7Adr, indicating that metabolic shifts were involved in adriamycin resistance. Many intracellular metabolites involved in various metabolic pathways were significantly modulated by adriamycin treatment in the drug-sensitive MCF-7S cells, but were much less affected in the drug-resistant MCF-7Adr cells. Adriamycin treatment markedly depressed the biosynthesis of proteins, purines, pyrimidines and glutathione, and glycolysis, while it enhanced glycerol metabolism of MCF-7S cells. The elevated glycerol metabolism and down-regulated glutathione biosynthesis suggested an increased reactive oxygen species (ROS) generation and a weakened ability to balance ROS, respectively. Further studies revealed that adriamycin increased ROS and up-regulated P-gp in MCF-7S cells, which could be reversed by N-acetylcysteine treatment. It is suggested that adriamycin resistance is involved in slowed metabolism and aggravated oxidative stress. Assessment of cellular metabolomics and metabolic markers may be used to evaluate anti-tumor effects and to screen for candidate anti-tumor agents.  相似文献   

17.
In this study we used a new method to detect reactive oxygen species (ROS) induced damage at the level of the sperm plasma membrane in fresh and frozen-thawed stallion sperm. Lipid peroxidation (LPO) in sperm cells was assessed by a fluorescent assay involving the labeling of stallion sperm with the LPO reporter probe C11-BODIPY(581/591). The peroxidation dependent spectral emission shift of this membrane probe could be localized using inverted spectral confocal microscopy and quantified on living and deteriorated sperm cells using flow cytometry. Mass spectrometric analysis of the main endogenous lipid class, phosphatidylcholine (PC), was carried out to determine the formation of hydroxy- and hydroperoxyphosphatidylcholine in fresh sperm cells. Peroxidation as reported by the fluorescent probe corresponded with the presence of hydroxy- and hydroperoxyphosphatidylcholine in the sperm membranes, which are early stage products of LPO. This allowed us to correlate endogenous LPO with localization of this process in the living sperm cells. In absence of peroxidation inducers, only relatively little peroxidation was noted in fresh sperm cells whereas some mid-piece specific probe oxidation was noted for frozen-thawed sperm cells. After induction of peroxidation in fresh and frozen-thawed sperm cells with the 0.1 mM of lipid soluble ROS tert-butylhydrogen peroxide (t-BUT) intense probe oxidation was produced in the mid-piece, whereas the probe remained intact in the sperm head, demonstrating antioxidant activity in the head of fresh sperm cells. At higher levels of t-BUT, probe peroxidation was also noted for the sperm head followed by a loss of membranes there. Frozen-thawed sperm were more vulnerable to t-BUT than fresh sperm. The potential importance of the new assays for sperm assessments is discussed.  相似文献   

18.
Reactive oxygen species (ROS) comprise several oxygen containing compounds, among them hydrogen peroxide (H2O2), which are generated by internal and external sources and play pleiotropic roles in physiological and pathological states. Skin cells as well as cells from other tissues have developed antioxidant defense mechanisms to protect themselves from high concentrations of ROS. Although biological and pathological roles of ROS have previously been elucidated, so far only limited knowledge exists regarding ROS-mediated generation of DNA breaks and base lesions occurring at low frequency in intact skin cells. This study was therefore designed to probe a newly adapted pulsed-field gel electrophoresis technique for the adequate measurement of high molecular weight DNA fragments as well as to investigate the protective role of the antioxidant enzyme catalase against H2O2-mediated damage in human dermal fibroblasts. We stably transfected and overexpressed the full-length catalase cDNA in the human dermal fibroblast cell line 1306 in culture and found that these cells are significantly more protected from cytotoxicity, overall DNA strand breaks, and 8-oxodeoxyguanine base lesions resulting from H2O2-triggered oxidative stress compared to vector-transfected 1306 cells or secondary dermal fibroblasts. This work has outlined the importance of catalase in the protection from H2O2-mediated cytotoxicity and DNA damage which — if unbalanced — even when occurring at low frequency are known to lead to genomic instability, a hallmark in carcinogenesis and premature aging.  相似文献   

19.
Mitochondrial membrane potential (ΔΨm) is critical for maintaining the physiological function of the respiratory chain to generate ATP. A significant loss of ΔΨm renders cells depleted of energy with subsequent death. Reactive oxygen species (ROS) are important signaling molecules, but their accumulation in pathological conditions leads to oxidative stress. The two major sources of ROS in cells are environmental toxins and the process of oxidative phosphorylation. Mitochondrial dysfunction and oxidative stress have been implicated in the pathophysiology of many diseases; therefore, the ability to determine ΔΨm and ROS can provide important clues about the physiological status of the cell and the function of the mitochondria. Several fluorescent probes (Rhodamine 123, TMRM, TMRE, JC-1) can be used to determine Δψm in a variety of cell types, and many fluorescence indicators (Dihydroethidium, Dihydrorhodamine 123, H2DCF-DA) can be used to determine ROS. Nearly all of the available fluorescence probes used to assess ΔΨm or ROS are single-wavelength indicators, which increase or decrease their fluorescence intensity proportional to a stimulus that increases or decreases the levels of ΔΨm or ROS. Thus, it is imperative to measure the fluorescence intensity of these probes at the baseline level and after the application of a specific stimulus. This allows one to determine the percentage of change in fluorescence intensity between the baseline level and a stimulus. This change in fluorescence intensity reflects the change in relative levels of ΔΨm or ROS. In this video, we demonstrate how to apply the fluorescence indicator, TMRM, in rat cortical neurons to determine the percentage change in TMRM fluorescence intensity between the baseline level and after applying FCCP, a mitochondrial uncoupler. The lower levels of TMRM fluorescence resulting from FCCP treatment reflect the depolarization of mitochondrial membrane potential. We also show how to apply the fluorescence probe H2DCF-DA to assess the level of ROS in cortical neurons, first at baseline and then after application of H2O2. This protocol (with minor modifications) can be also used to determine changes in ∆Ψm and ROS in different cell types and in neurons isolated from other brain regions.  相似文献   

20.
胡海涛  钱婷婷  杨玲 《植物学报》2022,57(3):320-326
活性氧(reactive oxygen species, ROS)是植物体内的一把“双刃剑”。ROS作为信号分子在植物生命活动中发挥关键作用,但ROS过量积累会对生物大分子造成氧化损伤。准确测定ROS含量对于评估植物细胞内的氧化还原状态至关重要。由于植物体内ROS各组分半衰期短且反应活性强,定性定量检测较为困难。因此,选择合适的检测方法以提高检测的时空准确性非常重要。目前,荧光分析法因其具有灵敏度高、选择性好、检出限低和直观性强等优点,受到研究人员的广泛关注。该文详细描述基于流式细胞仪和激光共聚焦显微镜,利用2′,7′-二氯二氢荧光素二乙酸酯(H2DCFDA)荧光探针检测水稻(Oryzasativa)体内ROS水平和时空分布的操作流程及注意事项。该技术也可用于直接检测拟南芥(Arabidopsis thaliana)、玉米(Zea mays)和大豆(Glycine max)等模式植物组织中ROS的水平和分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号