首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combined yeast/bacteria two-hybrid system: development and evaluation   总被引:3,自引:0,他引:3  
Two-hybrid screening is a standard method used to identify and characterize protein-protein interactions and has become an integral component of many proteomic investigations. The two-hybrid system was initially developed using yeast as a host organism. However, bacterial two-hybrid systems have also become common laboratory tools and are preferred in some circumstances, although yeast and bacterial two-hybrid systems have never been directly compared. We describe here the development of a unified yeast and bacterial two-hybrid system in which a single bait expression plasmid is used in both organismal milieus. We use a series of leucine zipper fusion proteins of known affinities to compare interaction detection using both systems. Although both two-hybrid systems detected interactions within a comparable range of interaction affinities, each demonstrated unique advantages. The yeast system produced quantitative readout over a greater dynamic range than that observed with bacteria. However, the phenomenon of "autoactivation" by baits was less of a problem in the bacterial system than in the yeast. Both systems identified physiological interactors for a library screen with a cI-Ras test bait; however, non-identical interactors were obtained in yeast and bacterial screens. The ability to rapidly shift between yeast and bacterial systems provided by these new reagents should provide a marked advantage for two-hybrid investigations. In addition, the modified expression vectors we describe in this report should be useful for any application requiring facile expression of a protein of interest in both yeast and bacteria.  相似文献   

2.
The recent sequencing of entire eukaryotic genomes has renewed the interest in identifying and characterizing all gene products that are expressed in a given organism. The characterization of unknown gene products is facilitated by the knowledge of its binding partners. Thus, a novel protein may be classified by identifying previously characterized proteins that interact with it. If such an approach is carried out on a large scale, it may allow the rapid characterization of the thousands of predicted open reading frames identified by recent sequencing projects. Currently, the yeast two-hybrid system is the most widely used genetic assay for the detection of protein-protein interactions. The yeast two-hybrid system has become popular because it requires little individual optimization and because, as compared to conventional biochemical methods, the identification and characterization of protein-protein interactions can be completed in a relatively short time span. In this review, we briefly discuss the yeast two-hybrid system and its application to large scale screening studies that aim at deciphering all protein-protein interactions taking place in a given cell type or organism. We then focus on a class of proteins that is unsuitable for conventional yeast two-hybrid systems, namely integral membrane proteins and membrane-associated proteins, and describe several novel genetic systems that combine the advantages of the yeast two-hybrid system with the potential to identify interaction partners of membrane-associated proteins in their natural setting.  相似文献   

3.
Xue YN 《生理科学进展》2001,32(3):229-232
近年来,一些不依赖于转录因子活性的新型双杂交系统相继建立,如分离的泛素系统、蛋白质片段互补分析、阻遏物重构分析和SOS恢复系统等。同利用转录因子活性的酵母双杂交系统相似,这些方法也利用了一些活性蛋白的结构与功能特点来研究蛋白质间相互作用,这些活性蛋白不是转录因子,但也可在结构上进行分离可通过重构使其生物活性得以恢复。由于这些新型双杂交系统的各自特点,使得它们成为酵母双杂交系统的有益补充和研究蛋白质间相互作用的有力工具。  相似文献   

4.
ABSTRACT

The recent sequencing of entire eukaryotic genomes has renewed the interest in identifying and characterizing all gene products that are expressed in a given organism. The characterization of unknown gene products is facilitated by the knowledge of its binding partners. Thus, a novel protein may be classified by identifying previously characterized proteins that interact with it. If such an approach is carried out on a large scale, it may allow the rapid characterization of the thousands of predicted open reading frames identified by recent sequencing projects. Currently, the yeast two-hybrid system is the most widely used genetic assay for the detection of protein–protein interactions. The yeast two-hybrid system has become popular because it requires little individual optimization and because, as compared to conventional biochemical methods, the identification and characterization of protein–protein interactions can be completed in a relatively short time span. In this review, we briefly discuss the yeast two-hybrid system and its application to large scale screening studies that aim at deciphering all protein–protein interactions taking place in a given cell type or organism. We then focus on a class of proteins that is unsuitable for conventional yeast two-hybrid systems, namely integral membrane proteins and membrane-associated proteins, and describe several novel genetic systems that combine the advantages of the yeast two-hybrid system with the potential to identify interaction partners of membrane-associated proteins in their natural setting.  相似文献   

5.
6.
The increasing rate at which complete genome sequences become available necessitates rapid and robust methods for investigating the functions of their encoded proteins. Efforts have been made to study protein function by systematically screening large sets of proteins using the two-hybrid method. Analyses of the complete proteomes of baceriophage T7, the mammalian viruses hepatitis C and vaccinia, as well as of several protein complexes including RNA splicing proteins and RNA polymerase III from yeast, have been undertaken. Saccharomyces cerevisiae has been studied extensively by two-hybrid methods, with more than 2500 protein-protein interactions described. Systematic studies on metazoan proteomes are, however, still in their infancy.  相似文献   

7.
Protein-protein interactions are recognized as one of the fundamental mechanisms for relaying the intra- and intercellular signals that are required for normal cellular activities affecting growth, development, and maintenance of homeostasis in tissues and organs. The yeast two-hybrid screen has become a valuable tool for identifying protein-protein interactions. The gap junction protein connexin 43 (Cx43) has been implicated in a number of biological processes including development and cellular growth control. To further advance our understanding of the ways in which Cx43 may influence these cellular activities, and to extend our knowledge of the regulation of Cx43 function and/or processing, we have employed the yeast two-hybrid screen technique to identify Cx43-interacting proteins. We present detailed methods for the yeast two-hybrid screen of a mouse embryonic cDNA library using the C terminus of Cx43 as "bait." We also describe additional methods to confirm the interactions between Cx43 and the identified proteins. These methods include in vitro binding assays, coimmunoprecipitation, and subcellular localization using immunofluorescence microscopy.  相似文献   

8.
9.
10.
The role of the coiled-coil motif in interactions mediated by TPD52   总被引:2,自引:0,他引:2  
TPD52 (D52)-like proteins are small coiled-coil motif-bearing proteins first identified through their expression in human breast carcinoma that mutually interact in hetero- and homomeric fashions. However, it has been unclear whether the coiled-coil motif is sufficient, or even necessary, for these interactions to occur. We have therefore examined the binding activities of a panel of C-terminally deleted D52 proteins in both the yeast two-hybrid system and pull-down assays. In the yeast two-hybrid system, interactions were only detected when regions C-terminal to the coiled-coil motif were also present. However, using pull-down assays, interactions were detected for all deletion mutants which included the coiled-coil motif. This suggests that the coiled-coil motif is indeed necessary for interactions mediated by D52 proteins, but that C-terminal protein regions facilitate and/or stabilize these interactions.  相似文献   

11.
12.
Neisseria gonorrhoeae opacity-associated (Opa) proteins are a family of outer membrane proteins involved in gonococcal adherence to and invasion of human cells. We wanted to identify additional roles for Opa in the infectious process and used the yeast two-hybrid system to identify human epithelial cell proteins that interact with Opa proteins. Although this system has been used successfully to identify many types of interacting proteins, it has not been used to screen a human cell cDNA library for binding partners of a prokaryotic outer membrane protein. Therefore, we were also interested in exploring the versatility of the yeast two-hybrid system in identifying bacteria–host interactions. Using OpaP from strain F62SF as bait, we screened a HeLa cell cDNA library for Opa-interacting proteins (OIPs). We identified five different OIPs, designated OIP1–OIP5, two of which are homologous to human proteins — thyroid hormone receptor interacting protein (TRIP6) and pyruvate kinase isoenzyme M2 (PK). In the studies presented here, we investigated the interaction between Opa proteins and PK in more depth. Opa–PK interactions were confirmed by in vitro and in vivo assays independent of the yeast two-hybrid system. Escherichia coli expressing six different Opa proteins from gonococcal strain FA1090 all bound more PK than Opa-negative E. coli in in vitro binding assays. Using anti-PK antibody and fluorescence microscopy, we showed that human epithelial cell PK co-localizes with intracellular Opa+ gonococci and E. coli expressing Opa proteins. Using a mutant of N. gonorrhoeae unable to grow on pyruvate or lactate, it appears that intracellular pyruvate is essential for gonococcal growth and survival. These results suggest a novel mechanism in bacterial pathogenesis, i.e. the requirement for direct molecular interaction with a host metabolic enzyme (PK) for the acquisition of an essential intracellular carbon source and growth substrate (pyruvate). These results demonstrate that the yeast two-hybrid system is a valuable tool for identifying biologically relevant interactions between bacteria and host proteins, providing valuable leads for further investigations into novel mechanisms of bacterial pathogenesis.  相似文献   

13.
酵母双杂交已是研究蛋白质相互作用的经典方法之一。该方法以真核生物酵母为模型,在体内研究活细胞内蛋白质的相互作用,具有高度敏感性,被很多研究者采用。综述了酵母双杂交系统中诱饵蛋白载体的构建,及其在转化酵母中的毒性、自激活性检测研究的最新进展。  相似文献   

14.
15.
Membrane protein-protein interactions are important for regulation, targeting, and activity of proteins in membranes but are difficult to detect and analyse. This review covers current approaches to studying membrane protein interactions. In addition to standard biochemical and genetic techniques, the classic yeast nuclear two-hybrid system has been highly successful in identification and characterization of soluble protein-protein interactions. However, classic yeast two-hybrid assays do not work for membrane proteins because such yeast-based interactions must occur in the nucleus. Here, we highlight recent advances in yeast systems for the detection and characterization of eukaryote membrane protein-protein interactions. We discuss these implications for drug screening and discovery.  相似文献   

16.
17.
酵母双杂交技术是鉴定蛋白互作最有效和最广泛的分子生物学技术。该技术能直接作用于活细胞,检测细胞内蛋白质互作,具有成本低、易操作、可达到全基因组水平、能进行品种间的互作鉴定等诸多优点。较之传统的检测方法有明显优势,已在越来越多的领域得到应用。对酵母双杂交的技术原理以及应用进行了综述,介绍了该技术在发现新蛋白质、探究蛋白质功能、建立基因组蛋白连锁图、研究人类DNA文库和筛选药物作用位点等方面的重要应用,以期为该技术的广泛应用提供参考。  相似文献   

18.
19.
利用酵母双杂交系统,以橡胶树(Hevea brasiliensis)橡胶延长因子基因REF的开放阅读框(ORF)构建无自激活性的诱饵表达载体pBD-GAL4-REF,并筛选以pAD-GAL4-2.1载体构建的橡胶树胶乳cDNA文库,对阳性克隆的cDNA插入片段进行测序及生物学功能分析。通过酵母双杂交筛选,共获得5种可能与REF互作的候选蛋白质,它们分别为与诱饵蛋白REF高度同源的REF家族成员、小橡胶粒子蛋白(SRPP)、翻译控制肿瘤蛋白(TCTP)、激发子响应蛋白和泛素耦联酶E2,这表明橡胶延长因子REF除了与自身高度同源蛋白质可能存在相互作用之外,还可能与TCTP和激发子响应蛋白等其它蛋白质发生相互作用。这些结果有助于揭示橡胶粒子的生物学功能。  相似文献   

20.
The majority of small molecule drugs act on protein targets to exert a therapeutic function. It has become apparent in recent years that many small molecule drugs act on more than one particular target and consequently, approaches which profile drugs to uncover their target binding spectrum have become increasingly important. Classical yeast two-hybrid systems have mainly been used to discover and characterize protein-protein interactions, but recent modifications and improvements have opened up new routes towards screening for small molecule-protein interactions. Such yeast "n"-hybrid systems hold great promise for the development of drugs which interfere with protein-protein interactions and for the discovery of drug-target interactions. In this review, we discuss several yeast two-hybrid based approaches with applications in drug discovery and describe a protocol for yeast three-hybrid screening of small molecules to identify their direct targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号