首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of hydroxypropyl methylcellulose-g-poly (ethyl acrylate) was carried out by potassium persulfate induced graft copolymerization in homogeneous aqueous medium. By varying the reaction conditions, graft copolymers with different percentage of grafting were prepared. These graft copolymers were characterized by fourier transform infrared spectra (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analyses (TGA), X-ray diffraction analysis (XRD), and dynamic light scattering (DLS) methods. The molecular weight of grafted and ungrafted polymer chains determined by gel permeation chromatography (GPC) increased with increasing monomer and matrix concentration but decreased with increasing initiator concentration and reaction temperature. The mechanical properties of graft copolymers were measured as function of the percentage of grafting. In addition, the equilibrium humidity adsorption behavior and the disintegration time of the grafted copolymer films were also studied.  相似文献   

2.
Amphiphilic polyphosphate graft copolymers with varied densities of cholesteryl esters and hydrophilic graft chains were prepared, and the solution properties of the graft copolymers were evaluated. Polyphosphates were synthesized as backbones by ring-opening polymerization of 2-isopropyl-2-oxo-1,3,2-dioxaphospholane (IPP), 2-(2-oxo-1,3,2-dioxaphosphoroyloxyethyl-2-bromoisobutyrate) (OPBB), and 2-choresteryl-2-oxo-1,3,2-dioxaphospholane (ChOP) using triisobutylaluminum as an initiator. Three types of polyphosphates (PIBr(x)Ch(y), x = number of OPBB units in a polymer; y = number of ChOP units in a polymer) such as PIBr4, PIBr6Ch1, and PIBr3Ch2 were obtained. The molecular weights of these polymers were 2.4 x 10(4), 2.4 x 10(4), and 2.6 x 10(4) g/mol, respectively. 2-Methacryloyloxyethyl phosphorylcholine (MPC) was grafted from the OPBB sites in PIBr(x)Ch(y) via atom transfer radical polymerization (ATRP) in EtOH. In each polymer system, the molecular weight of the graft polymer was linear with conversion. Furthermore, the polymer radical concentration remained constant during polymerization; that is, the molecular weights of the graft chains were easily controllable with polymerization time. The solution properties of amphiphilic PIBr(x)Ch(y)-g-PMPCs were investigated by the methods of surface tension measurement, light scattering, and fluorescence probe. The transition point (cmc) of the surface tension of the PIBr(x)Ch(y)-g-PMPCs aqueous solution decreased with an increase in the number of ChOP units in a graft polymer. Particularly, PIBr3Ch2-g-PMPC14.9K formed nanosized associates (R(h) = 7.5 nm) with 2.2 molecules above 0.1 wt %. v79 cells were used to evaluate the cytotoxicity of the graft polymers, but no cytotoxicity was observed. The graft polymers containing cholesteryl groups effectively enhanced the solubility of paclitaxel in an aqueous solution.  相似文献   

3.
Trimethylsilylated hydroxyethyl cellulose (TMSHEC) was synthesized by using hexamethyldisilazane (HMDS) as silylated agent. With the partial protection of hydroxyl groups of HEC by silylation, the novel poly(?-polycaprolactone) (PCL) grafted HEC (HEC-g-PCL) copolymers were successfully prepared by homogenous ring-opening graft polymerization and deprotection procedure. The structure of HEC-g-PCL copolymers was characterized by FTIR and 1H NMR. Fluorescence spectrum of HEC-g-PCL copolymer dilute solution indicated that copolymers could associate and form hydrophobic microdomains in aqueous solution. With the increasing of grafted PCL content, the critical association concentration (cac) of HEC-g-PCL copolymers decreased. The surface tension of HEC-g-PCL copolymers decreased dramatically with the increasing of the concentration and then approached to a plateau value when concentration was above the cac of HEC-g-PCL copolymers. The hydrodynamic radius of the aggregate of copolymer in dilute solution was found to increase with the increasing of the grafted PCL content. When the concentration of copolymer was above the cac, the zero-shear viscosity of the copolymer increased sharply and became much higher than that of HEC at the same concentration.  相似文献   

4.
Yu H  Wang W  Chen X  Deng C  Jing X 《Biopolymers》2006,83(3):233-242
A novel synthetic approach to biodegradable amphiphilic copolymers based on poly (epsilon-caprolactone) (PCL) and chitosan was presented, and the prepared copolymers were used to prepare nanoparticles successfully. The PCL-graft-chitosan copolymers were synthesized by coupling the hydroxyl end-groups on preformed PCL chains and the amino groups present on 6-O-triphenylmethyl chitosan and by removing the protective 6-O-triphenylmethyl groups in acidic aqueous solution. The PCL content in the copolymers can be controlled in the range of 10-90 wt %. The graft copolymers were thoroughly characterized by 1H NMR, 13C NMR, FT-IR and DSC. The nanoparticles made from the graft copolymers were investigated by 1H NMR, DLS, AFM and SEM measurements. It was found that the copolymers could form spherical or elliptic nanoparticles in water. The amount of available primary amines on the surface of the prepared nanoparticles was evaluated by ninhydrin assay, and it can be controlled by the grafting degree of PCL.  相似文献   

5.
Hybridization of the natural polymers with synthetic polymers is of great interest because of its application to biomedical and biodegradable materials. Synthesis of graft copolymers of methyl methacrylate (MMA) onto acetylated Saccharum spontaneum L. fiber using ferrous ammonium sulphate–potassium per sulphate (FAS–KPS) redox initiator under the influence of microwave radiation (MWR) was carried-out. Different reaction parameters such as time, initiator molar ratio, monomer concentration, microwave power, pH and solvent were optimized to get maximum graft yield (72.2%). On grafting, percentage crystallinity decreases rapidly with reduction in its stiffness and hardness. The graft copolymers thus formed were characterized by FTIR, SEM, XRD, TGA, DTA and DTG techniques. Moreover, graft copolymers have been found to be more moisture resistant and also showed higher chemical and thermal resistance.  相似文献   

6.
On the basis of the synthesis of novel biodegradable amphiphilic MPEG-b-PCL-grafted chitooligosaccharide (COS-g-PCL-b-MPEG) copolymers, supramolecular hydrogels were fabricated rapidly via their inclusion complexation with α-cyclodextrin (α-CD) in aqueous solutions. The graft copolymers were characterized by 1H NMR spectroscopy, gel permeation chromatography (GPC), and fluorescence measurement, and the supramolecular structure of the resultant hydrogels was confirmed by X-ray diffraction measurements. Rheological studies of as-obtained hydrogels indicate that the physical properties could be modulated by controlling the concentration and the graft content of the graft copolymers as well as the molar feed ratio of the graft to α-CD. The in vitro release kinetics studies of bovine serum albumin (BSA) entrapped in the hydrogels show that the drug release profiles are dependent on the supramolecular hydrogel compositions.  相似文献   

7.
Grafting of methacrylonitrile (MAN) onto dried maize starch using ceric ammonium nitrate (CAN) as an initiator has been studied gravimetrically under nitrogen atmosphere in aqueous medium. The percentage grafting is favoured by increasing monomer concentration and reaction time but is affected by higher concentration of initiator and high temperature. No grafting was observed beyond 45°C. The optimum conditions established for grafting were: [CAN]=0.002 mol/l which was added in molar nitric acid; [MAN]=0.755 mol/l; reaction time, 180 min; and temperature, 35°C. The graft copolymers were analyzed by infrared spectroscopy and acid hydrolysis. The grafting of methacrylonitrile onto starch does not alter the thermal stability of starch. The crystalline region of starch was also involved in grafting. Scanning electron microscopy showed a thick polymer coating of grafted PMAN on the starch surface.  相似文献   

8.
The graft copolymerization of 2-hydroxyethylmethacrylate (HEMA) onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) films has been investigated. The graft copolymerization was conducted in aqueous media using benzoyl peroxide (BPO) as chemical initiator. PHBHV films were prepared by solvent casting. Different parameters affecting the graft yield were studied such as monomer concentration, initiator concentration, and reaction time. The extent of grafting has been modulated by the preparation conditions, in particular the concentration of HEMA. However, it is interesting to note that the initiator concentration had only a slight influence on the graft yield. Characterization of the grafted PHBHV films assumed that the graft copolymerization not only occurred on the film surface but also took place into the film bulk. Differential scanning calorimetry showed that crystallinity dramatically decreased with increasing graft yield, indicating that graft copolymerization hindered the crystallization process. Wettability has been obviously improved by grafting a hydrophilic monomer such as HEMA for high graft yield (>130%).  相似文献   

9.
Nowadays, biomaterials with amphiphilic properties are undergoing remarkable development. Here, we present one such development, in which we prepared amphiphilic graft copolymers, with a main chain composed of hydroxyethyl acrylamide (HEAA), to introduce hydrophilicity, and a side chain composed of poly(trimethylene carbonate) (PTMC) to introduce tunable hydrophobicity. These macromonomers were created with a novel molecular design, which introduced a ring-opening polymerization by the hydroxyl end group of HEAA in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene, and were analyzed by (1)H NMR and gel permeation chromatography. The amphiphilic graft copolymers were shown to form a hydrogel, the swelling ratio of which was greatly influenced by the number of trimethylene carbonate units. These copolymers also exhibited the Tyndall phenomenon in aqueous solution; they aggregated spontaneously due to hydrogen bonding and hydrophobic interactions, and a sodium 8-anilino-1-naphthalenesulfonate (ANS) fluorescence probe was introduced into the hydrophobic domain. The solution property of ANS in the polymer solution was analyzed by fluorescence measurement and (1)H NMR. The maximum fluorescence wavelength of ANS shifted to shorter wavelengths as the degree of polymerization of the hydrophobic PTMC, the composition of the macromonomer, and the concentration of the copolymer increased. The resulting copolymer formed a polymer micelle structure due to the tunable hydrophobic domain formation in selected solvents. Therefore, these amphiphilic graft copolymers containing a PTMC segment are excellent candidates for use as hydrophobic drug delivery carriers.  相似文献   

10.
The graft copolymerization of methyl methacrylate onto mercaptochitin and some properties of the resulting graft copolymers have been studied. Methyl methacrylate was efficiently graft copolymerized onto mercaptochitin in dimethyl sulfoxide, and the grafting percentage reached 1300% under appropriate conditions. Although the side-chain ester groups were resistant to aqueous alkali, hydrolysis could be achieved with a mixture of aqueous sodium hydroxide and dimethyl sulfoxide. Subsequent treatment with acetic anhydride in methanol transformed the sodium carboxylate groups into carboxyl groups. Although the graft copolymers exhibited an improved affinity for organic solvents, those having sodium carboxylate or carboxyl units were characterized by a much more enhanced solubility and were soluble in common solvents. The hygroscopic nature of chitin decreased with an increase in the grafting extent but increased significantly upon hydrolysis of the ester groups. The enzymatic degradability of the graft copolymers, as evaluated with lysozyme, was also dependent on the grafting extent and much higher than that of the original chitin. DSC measurements revealed the presence of a glass transition phenomenon, which could be ascribed to the poly(methyl methacrylate) side chain.  相似文献   

11.
Homogeneous solutions of poly(3-hydroxyoctanoate) (PHO) and the monoacrylate-poly(ethylene glycol) (PEGMA) monomer in chloroform were irradiated with UV light to obtain PEGMA-grafted PHO (PEGMA-g-PHO) copolymers. Variables affecting the degree of grafting (DG), such as the time of UV irradiation and the concentrations of the PEGMA monomer and initiator, were investigated. The PEGMA-g-PHO copolymers were characterized by measuring the water contact angle, molecular weight, thermal transition temperatures and mechanical properties, as well as by nuclear magnetic resonance spectroscopy. The results from all of these measurements indicate that PEGMA groups were present on the PHO polymer. The protein adsorption and platelet adhesion on the PEGMA-g-PHO surfaces were examined using poly(L-lactide) (PLLA) surfaces as the control. The proteins and platelets had a significantly lower tendency to adhere to the PEGMA-g-PHO copolymers than to PLLA. The graft copolymer with a high DG of PEGMA was very effective in reducing the protein adsorption and platelet adhesion and did not activate the platelets. The results obtained in this study suggest that PEGMA-g-PHO copolymers have the potential to be used as blood-contacting devices in a broad range of biomedical applications.  相似文献   

12.
Sequential copolymerizations of trimethylene carbonate (TMC) and l-lactide (LLA) were performed with 2,2-dibutyl-2-stanna-1,3-oxepane as a bifunctional cyclic initiator. The block lengths were varied via the monomer/initiator and via the TMC/l-lactide ratio. The cyclic triblock copolymers were transformed in situ into multiblock copolymers by ring-opening polycondensation with sebacoyl chloride. The chemical compositions of the block copolymers were determined from (1)H NMR spectra. The formation of multiblock structures and the absence of transesterification were proven by (13)C NMR spectroscopy. Differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), and dynamic mechanical analysis (DMA) measurements confirmed the existence of a microphase-separated structure in the multiblock copolymers consisting of a crystalline phase of poly(LLA) blocks and an amorphous phase formed by the poly(TMC) blocks. Stress-strain measurements showed the elastomeric character of these biodegradable multiblock copolymers, particularly in copolymers having epsilon-caprolactone as comonomer in the poly(TMC) blocks.  相似文献   

13.
Yuan W  Yuan J  Zhang F  Xie X 《Biomacromolecules》2007,8(4):1101-1108
Well-defined ethyl cellulose-graft-poly(epsilon-caprolactone) (EC-g-PCL) graft copolymers were successfully synthesized via ring-opening polymerization (ROP) of epsilon-caprolactone (CL) with an ethyl cellulose (EC) initiator and a tin 2-ethylhexanoate (Sn(Oct)2) catalyst in xylene at 120 degrees C. Then, novel ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) (EC-g-PCL-b-PLLA) graft-block copolymers were prepared by ROP of L-lactide (L-LA) with a hydroxyl-terminated EC-g-PCL macroinitiator and Sn(Oct)2 catalyst in bulk at 120 degrees C. Various graft and block lengths of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were obtained by adjusting the molar ratios of CL monomer to EC and the L-LA monomer to CL. The thermal properties and crystalline morphologies of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were different from those of linear PCL. The in vitro degradation rate of EC-g-PCL-b-PLLA was faster than those of linear PCL and EC-g-PCL due to the presence of PLLA blocks.  相似文献   

14.
The synthesis of biocompatible, thermo-responsive ABA triblock copolymers in which the outer A blocks comprise poly(N-isopropylacrylamide) and the central B block is poly(2-methacryloyloxyethyl phosphorylcholine) is achieved using atom transfer radical polymerization with a commercially available bifunctional initiator. These novel triblock copolymers are water-soluble in dilute aqueous solution at 20 degrees C and pH 7.4 but form free-standing physical gels at 37 degrees C due to hydrophobic interactions between the poly(N-isopropylacrylamide) blocks. This gelation is reversible, and the gels are believed to contain nanosized micellar domains; this suggests possible applications in drug delivery and tissue engineering.  相似文献   

15.
Starch and attapulgite were utilized as raw material for synthesizing starch-graft-poly(acrylic acid)/attapulgite superabsorbent composite by graft copolymerization reaction of starch and acrylic acid (AA) in the presence of attapulgite micropowder in aqueous solution. Major factors affecting on water absorbency such as weight ratio of AA to starch, initial monomer concentration, neutralization degree of AA, amount of crosslinker, initiator and attapulgite were investigated. The superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10 wt% exhibit absorption of 1077 g H(2)O/g sample and 61 g H(2)O/g sample in distilled water and in 0.9 wt% NaCl solution, respectively. This superabsorbent composite with excellent water absorbency and water retention under load, being biodegradable in nature, economical and environment-friendly, could be especially useful in agricultural and horticultural applications.  相似文献   

16.
Di-O-(6-azidohexanoyl)-xylan-graft-poly(l-lactide)s (XylC6N3-g-PLLAs) were prepared by grafting propargyl-terminated poly(l-lactide) onto di-O-(6-azidohexanoyl)-xylan (XylC6N3) via click chemistry. Di-O-(6-azidohexanoyl)-xylan (XylC6N3) was prepared via two steps from xylan extracted from eucalyptus kraft pulp with aqueous sodium hydroxide solution. Propargyl-terminated poly(l-lactide)s (PLLA) with three different molecular weights were synthesized via ring-opening polymerization of l-lactide using propargyl alcohol as initiator and tin (II) octanoate (Sn(Oct)2) as catalyst. XylC6N3 and propargyl-terminated PLLAs were treated with N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA) and copper(I) bromide, and the graft copolymers XylC6N3-g-PLLAs were obtained. DSC measurements revealed that the glass transition temperatures (Tg) of the copolymers decreased compared to that of XylC6N3, suggesting that the grafted PLLA side-chains act as an internal plasticizer for xylan. TGA measurements revealed that XylC6N3-g-PLLAs had higher decomposition temperatures than those of XylC6N3 or PLLA, and that the decomposition temperatures of the copolymers increased with decrease in the number of PLLA side-chains grafted to the xylan main-chain.  相似文献   

17.
Liquid/liquid partition chromatography is a mild yet powerful separation method for a variety of biological materials. This work demonstrates that it should be feasible to immobilize an ethylene oxide-propylene oxide (EO/PO) random copolymer solution and to use a solution of NaCl equilibrated against the polymer solution as the mobile-phase (poly (EO-PO) [P(EO-PO)] and NaCl form two aqueous phases known as aqueous two-phase systems). Three random copolymers with different molecular weights and EO/PO ratios were used. Dodecyl-agarose and polystyrene were tested as possible supports. The wetting energies of the aqueous two-phase systems on these two kinds of surfaces were calculated as well as contact angles for each phase on the same surfaces. Finally, the thickness of P(EO-PO) adsorption layers on polystyrene lattices were measured by dynamic light scattering. Contact angle measurements indicate that indeed some EO/PO copolymers preferentially wet hydrophobic substrates, forming thin films.  相似文献   

18.
《Bioresource technology》2000,71(3):279-281
Cellulosic graft copolymers were prepared by the reaction of bast fibers of the kenaf plant (Hibiscus cannabinus) with acrylonitrile and methacrylonitrile monomers in aqueous media initiated by the ceric ion-toluene redox pair. The cellulose-polyacrylonitrile (Cell-PAN) and cellulose-polymethacrylonitrile (Cell-PMAN) graft copolymers were used for the removal of Zn(II) and Cr(III) ions from aqueous solutions at 30°C. Zn(II) ion was more sorbed than Cr(III) ion by both copolymers by an average factor of 1.80 ± 0.40. For each metal ion, the Cell-PAN graft copolymer was a more effective sorbent than the Cell-PMAN derivative. The amount of ion sorbed decreased with an increase in percentage graft and over the range 38–149% of the graft the amounts of Zn(II) and Cr(III) ions sorbed by Cell-PAN decreased by 44% and 56%, respectively.  相似文献   

19.
Hydroxypropyl cellulose (HPC) was used as a core molecule for controlled grafting of monomers by ATRP, the aim being to produce densely grafted comb polymers. HPC was either allowed to react with an ATRP initiator or the first generation initiator-functionalized 2,2-bis(methylol)propionic acid dendron to create macroinitiators having high degrees of functionality. The macroinitiators were then "grafted from" using ATRP of methyl methacrylate (MMA) or hexadecyl methacrylate. Block copolymers were obtained by chain extending PMMA-grafted HPCs via the ATRP of tert-butyl acrylate. Subsequent selective acidolysis of the tert-butyl ester moieties was performed to form a block of poly(acrylic acid) resulting in amphiphilic block copolymer grafts. The graft copolymers were characterized by 1H NMR and FT-IR spectroscopies, DSC, TGA, rheological measurements, DLS, and tapping mode AFM on samples spin coated upon mica. It was found that the comb (co)polymers were in the nanometer size range and that the dendronization had an interesting effect on the rheological properties.  相似文献   

20.
A new, low-cost, and eco-friendly cellulose-based superabsorbent was successfully prepared from flax yarn waste. The method used was a free-radical graft copolymerization of AA and AM onto a cellulose backbone in a homogeneous aqueous solution. APS was used as the initiator in the presence of a crosslinker, MBA. The effects of various factors on water absorbency were discussed. The factors included reaction temperature, initiator amount, monomer amount, salt solution type, and solution pH. Under the optimized conditions, the water absorbencies of the obtained superabsorbent composite were 875 g/g distilled water, 490 g/g natural rainwater, and 90 g/g 0.9 wt% aqueous NaCl solution. The product also had excellent water retention and salt resistance properties. Fourier-transform infrared spectroscopy and scanning electron microscopy were employed to examine the structure of the prepared superabsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号