首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of six purified Thermomonospora fusca cellulases and Trichoderma reesei CBHI and CBHII were determined on filter paper, swollen cellulose, and CMC. A simple method to measure the soluble and insoluble reducing sugar products from the hydrolysis of filter paper was found to effectively distinguish between exocellulases and endocellulases. Endocellulases produced 34% to 50% insoluble reducing sugar and exocellulases produced less than 8% insoluble reducing sugar. The ability of a wide variety of mixtures of these cellulases to digest 5.2% of a filter paper disc in 16 h was measured quantitatively. The specific activities of the mixtures varied from 0.41 to 16.31 mumol cellobiose per minute per micromole enzyme. The degree of synergism ranged from 0.4 to 7.8. T. reesei CBHII and T. fusca E3 were found to be functionally equivalent in mixtures. The catalytic domains (cd) of T. fusca endocellulases E2 and E5 were purified and found to retain 93% and 100% of their CMC activity, respectively, but neither cd protein could digest filter paper to 5.2%. When E2cd and E5cd were substituted in synergistic mixtures for the native proteins, the mixtures containing E2cd retained 60%, and those containing E5cd retained 94% of the original activity. Addition of a beta-glucosidase was found to double the activity of the best synergistic mixture. Addition of CBHI to T. fusca crude cellulase increased its activity on filter paper 1.7-fold. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
In this study, the fragmentation activities of Thermomonospora fusca cellulases E(2), E(3), E(5), Trichoderma reesei CBHI, and their mixtures were measured to study synergism in fragmentation. Fragmentation studies revealed that only two pure cellulases, T. fusca E(2) and E(5) had significant fragmentation activity. T. fusca E(3) shows strong synergism in fragmentation both in the production of reducing sugars and in fragmentation with both T. fusca endoglucananses and with T. reesei CBHI. Most mixtures containing CBHI produced higher rates of fragmentation than comparable mixtures containing E(3). The highest rate and extent of reducing sugar formation and the highest fragmentation activity were obtained with a mixture of E(2), E(3), and CBHI. (c) 1992 John Wiley & Sons, Inc.  相似文献   

3.
The order Actinomycetales includes a number of genera that contain species that actively degrade cellulose and these include both mesophilic and facultative thermophilic species. Cellulases produced by strains from two of the genera containing thermophilic organisms have been studied extensively: Microbispora bispora and Thermomonospora fusca. Fractionation of M. bispora cellulases has identified six different enzymes, all of which were purified to near homogeneity and partially characterized. Two of these enzymes appear to be exocellulases and gave synergism with each other and with the endocellulases. The structural genes of five M. bispora cellulases have been cloned and one was sequenced. Fractionation of T. fusca cellulases has identified five different enzymes, all of which were purified to near homogeneity and partially characterized. One of the T. fusca enzymes gives synergism in the hydrolysis of crystalline cellulose with several T. fusca endocellulases and with Trichoderma reesei CBHI but not with T. reesei CBHII. Each T. fusca cellulase contains distinct catalytic and cellulose binding domains. The structural genes of four of the T. fusca endoglucanases have been cloned and sequenced, while three cellulase genes have been cloned from "T. curvata". The T. fusca cellulase genes are expressed at a low level in Escherichia soli, but at a high level in Streptomyces lividans. Sequence comparisons have shown that there are no significant amino acid homologies between any of the catalytic domains of the four T. fusca cellulases, but each of them shows extensive homology to several other cellulases and fits in one of the five existing cellulase gene families. There have been extensive studies of the regulation of the synthesis of these cellulases and a number of regulatory mutants have been isolated. This work has shown that the different T. fusca cellulases are coordinately regulated over a 100-fold range by two independent controls; induction by cellobiose and repression by any good carbon source.  相似文献   

4.
Pretreatment of bagasse by autohydrolysis at 200 degrees C for 4 min and explosive defibration resulted in the solubilization of 90% of the hemicellulose (a heteroxylan) and in the production of a pulp that was highly susceptible to hydrolysis by cellulases from Trichoderma reesei C-30 and QM 9414, and by a comercial preparation, Meicelase. Saccharification yields of 50% resulted after 24 h at 50 degrees C (pH 5.0) in enzymic digests containing 10% (w/v) bagasse pulps and 20 filter paper cellulase units (FPU). Saccharifications could be increased to more than 80% at 24 h by the addition of exogenous beta-glucosidase from Aspergillus niger. The crystallinity of cellulose in bagasse remained unchanged following autohydrolysis-explosion and did not appear to hinder the rate or extent of hydrolysis of cellulose. Autohydrolysis-exploded pulps extracted with alkali or ethanol to remove lignin resulted in lowere conversions of cellulose (28-36% after 25 h) than unextracted pulps. Alkali extracted pulps arising from autohydrolysis times of more than 10 min at 200 degrees C were less susceptible to enzymic hydrolysis than unextracted pulps and alkali-extracted pulps arising from short autohydrolysis times (e.g., 2 min at 200 degrees C). Autohydrolysis-explosion was as effective a pretreatment method as 0.25M NaOH (70 degrees C/2 h) both yielded pulps that resulted in high cellulose conversions with T. reesei cellulase preparations and Meicelase. Supplementation of T. reesei C-30 cellulose preparations with A. niger beta-glucosidases was effective in promoting the conversion of cellulose into glucose. A ration of FPU to beta-glucosidase of 1:1.25 was the minimum requirement to achieve more than 80% conversion of cellulose into glucose within 24 h. Other factors which influenced the extent of saccharification of autohydrolysis-exploded bagasse pulps were the enzyme-substrate ratio, the substrate concentration, and the saccharification mode.  相似文献   

5.
Autohydrolysis and ethanol-alkali pulping were used as pretreatment methods of wheat straw for its subsequent saccharification by Trichoderma reesei cellulase. The basic hydrolysis parameters, i.e., reaction time, pH, temperature, and enzyme and substrate concentration, were optimized to maximize sugar yields from ethanol-alkali modified straw. Thus, a 93% conversion of 2.5% straw material to sugar syrup containing 73% glucose was reached in 48 h using 40 filter paper units/g hydrolyzed substrate. The pretreated wheat straw was then fermented to ethanol at 43 degrees C in the simultaneous saccharification and fermentation (SSF) process using T. reesei cellulase and Kluyveromyces fragilis cells. From 10% (w/v) of chemically treated straw (dry matter), 2.4% (w/v) ethanol was obtained after 48 h. When the T. reesei cellulase system was supplemented with beta-glucosidase from Aspergillus niger, the ethanol yield in the SSF process increased to 3% (w/v) and the reaction time was shortened to 24 h.  相似文献   

6.
The DNA sequences of the Thermomonospora fusca genes encoding cellulases E2 and E5 and the N-terminal end of E4 were determined. Each sequence contains an identical 14-bp inverted repeat upstream of the initiation codon. There were no significant homologies between the coding regions of the three genes. The E2 gene is 73% identical to the celA gene from Microbispora bispora, but this was the only homology found with other cellulase genes. E2 belongs to a family of cellulases that includes celA from M. bispora, cenA from Cellulomonas fimi, casA from an alkalophilic Streptomyces strain, and cellobiohydrolase II from Trichoderma reesei. E4 shows 44% identity to an avocado cellulase, while E5 belongs to the Bacillus cellulase family. There were strong similarities between the amino acid sequences of the E2 and E5 cellulose binding domains, and these regions also showed homology with C. fimi and Pseudomonas fluorescens cellulose binding domains.  相似文献   

7.
E7, a single domain Family 33 cellulose binding module (CBM) protein, and E8, a non-catalytic, three-domain protein consisting of a Family 33 CBM, a FNIII domain, followed by a Family 2 CBM, were cloned, expressed, purified, and characterized. Western blots showed that E7 and E8 were induced and secreted when Thermobifida fusca was grown on cellobiose, Solka floc, switchgrass, or alfalfa as well as on beta-1,3 linked glucose molecules such as laminaribiose or pachyman. E8 bound well to alpha- and beta-chitin and bacterial microcrystalline cellulose (BMCC) at all pHs tested. E7 bound strongly to beta-chitin, less well to alpha-chitin and more weakly to BMCC than E8. Filter paper binding assays showed that E7 was 28% bound, E8 was 39% bound, a purified CBM2 binding domain from Cel6B was 88% bound, and only 5% of the Cel5A catalytic domain was bound. A C-terminal 6xHis tag influenced binding of both E7 and E8 to these substrates. Filter paper activity assays showed enhanced activity of T. fusca cellulases when E7 or E8 was present. This effect was observed at very low concentrations of cellulases or at very long times into the reaction and was mainly independent of the type of cellulase and the number of cellulases in the mixture. E8, and to a lesser extent E7, significantly enhanced the activity of Serratia marscescens Chitinase C on beta-chitin.  相似文献   

8.
A factorial experimental design approach was used to optimize mixtures of six cellulases (five Thermomonospora fusca cellulases and plus/minus Trichoderma reesei CBHI along with beta-glucosidase) so as to maximize the glucose produced from filter paper. Optimized mixture A and mixture B produced glucose at 25 and 8.3 μmol glucose/μmol enzyme/min, respectively, which are 8 and 1.5 times higher than the sum of the activity of the individual cellulases. In both mixtures, the glucose yield depended on the ratio and the cellulases used. Most enzymes showed synergistic interactions that increased the glucose yield. The yield of glucose with the optimum mixtures depended on the total enzyme concentration. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

9.
10.
A physico-chemical and structural characterization of three 1,4-beta-D-glucan cellobiohydrolases (EC. 3.2.1.91), isolated from a culture filtrate of the white-rot fungus Phanerochaete chrysosporium, reveals that the cellulolytic enzyme secretion pattern and thus the general degradation strategy for P. chrysosporium is similar to that of Trichoderma reesei. Partial sequence data show that two of the isolated enzymes, i.e., CBHI, pI 3.82 and CBH62, pI 4.85, are homologous with CBHI and EGI from T. reesei; while, the third, i.e., CBH50, pI 4.87, is homologous to T. reesei CBHII. Limited proteolysis with papain cleaved each of the three enzymes into two domains: a core protein which retained full catalytic activity against low molecular weight substrates and a peptide fragment corresponding to the cellulose binding domain, in striking similarity to the structural organization of T. reesei. CBHI and CBH62 have their binding domain located at the C-terminus, whereas in CBH50 it is located at the N-terminus. It is evident that synergistically acting cellobiohydrolases is a general requirement for efficient hydrolysis of crystalline cellulose by cellulolytic fungi.  相似文献   

11.
Synergism between cellulases facilitates efficient hydrolysis of microcrystalline cellulose. We hypothesize that the effects of synergism, observed as enhanced extents of hydrolysis, are related to cellulase binding to the substrate in mixtures. In this study, direct measurements of bound concentrations of fluorescence-labeled T. fusca Cel5A, Cel6B, and Cel9A on bacterial microcrystalline cellulose were used to study binding behaviors of cellulases in binary component reactions. The accuracy of the determination of fluorescence-labeled cellulase concentrations in binary component mixtures was in the range of 7-9%. Data at 5 degrees C show that binding levels of cellulases in mixture reactions are only 22-70% of the binding levels in single component reactions. At 50 degrees C, however, most of the cellulase components in the same mixtures bound to extents of 40-126% higher than in the corresponding single component reactions. The degrees of synergistic effect (DSE) observed for the reactions at 50 degrees C were greater than 1, indicating that the components in the mixture acted synergistically, whereas DSE < 1 was generally observed for the reactions at 5 degrees C indicating anti-synergistic behavior. Degrees of synergistic binding (DSB) were also calculated, where anti-synergistic mixtures had DSB < 1 and synergistic mixtures had DSB>1. We conclude that the lower extents of binding at 5 degrees C are due to competition for binding sites by the cellulase components in the mixtures and the enhanced binding extents at 50 degrees C are due to increased availability of binding sites on the substrates brought about by the higher extents of hydrolysis.  相似文献   

12.
Three thermostable neutral cellulases from Melanocarpus albomyces, a 20-kDa endoglucanase (Cel45A), a 50-kDa endoglucanase (Cel7A), and a 50-kDa cellobiohydrolase (Cel7B) heterologously produced in a recombinant Trichoderma reesei were purified and studied in hydrolysis (50 degrees C, pH 6.0) of crystalline and amorphous cellulose. To improve their efficiency, M. albomyces cellulases naturally harboring no cellulose-binding module (CBM) were genetically modified to carry the CBM of T. reesei CBHI/Cel7A, and were studied under similar experimental conditions. Hydrolysis performance and product profiles were used to evaluate hydrolytic features of the investigated enzymes. Each cellulase proved to be active against the tested substrates; the cellobiohydrolase Cel7B had greater activity than the endoglucanases Cel45A and Cel7A against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence of synergism was observed when mixtures of the novel enzymes were applied in a constant total protein dosage. Presence of the CBM improved the hydrolytic potential of each enzyme in all experimental configurations; it had a greater effect on the endoglucanases Cel45A and Cel7A than the cellobiohydrolase Cel7B, especially against crystalline substrate. The novel cellobiohydrolase performed comparably to the major cellobiohydrolase of T. reesei (CBHI/Cel7A) under the applied experimental conditions.  相似文献   

13.
Optimization of enzyme complexes for lignocellulose hydrolysis   总被引:2,自引:0,他引:2  
The ability of a commercial Trichoderma reesei cellulase preparation (Celluclast 1.5L), to hydrolyze the cellulose and xylan components of pretreated corn stover (PCS) was significantly improved by supplementation with three types of crude commercial enzyme preparations nominally enriched in xylanase, pectinase, and beta-glucosidase activity. Although the well-documented relief of product inhibition by beta-glucosidase contributed to the observed improvement in cellulase performance, significant benefits could also be attributed to enzymes components that hydrolyze non-cellulosic polysaccharides. It is suggested that so-called "accessory" enzymes such as xylanase and pectinase stimulate cellulose hydrolysis by removing non-cellulosic polysaccharides that coat cellulose fibers. A high-throughput microassay, in combination with response surface methodology, enabled production of an optimally supplemented enzyme mixture. This mixture allowed for a approximately twofold reduction in the total protein required to reach glucan to glucose and xylan to xylose hydrolysis targets (99% and 88% conversion, respectively), thereby validating this approach towards enzyme improvement and process cost reduction for lignocellulose hydrolysis.  相似文献   

14.
In this study, we expressed two cellulase encoding genes, an endoglucanase of Trichoderma reesei (EGI) and the beta-glucosidase of Saccharomycopsis fibuligera (BGL1), in combination in Saccharomyces cerevisiae. The resulting strain was able to grow on phosphoric acid swollen cellulose (PASC) through simultaneous production of sufficient extracellular endoglucanase and beta-glucosidase activity. Anaerobic growth (0.03h(-1)) up to 0.27gl(-1) DCW was observed on medium containing 10gl(-1) PASC as sole carbohydrate source with concomitant ethanol production of up to 1.0gl(-1). We have thus demonstrated the construction of a yeast strain capable of growth on and one-step conversion of amorphous cellulose to ethanol, representing significant progress towards realization of one-step processing of cellulosic biomass in a consolidated bioprocessing configuration. To our knowledge, this is the first report of a recombinant strain of S. cerevisiae growing on pure cellulose.  相似文献   

15.
Conidia of the cellulolytic strain Trichoderma reesei F522 were mutagenized with UV irradiation and N-methyl|-N'-nitro-N-nitrosoguanidine (NTG). A visual agar plate detection system was developed, using esculin and ferric ions, to identify mutants of T. reesei with increased beta-glucosidase activity. Selected mutants were tested for production of extracellular cellulases in shake flasks on autohydrolyzed wheat straw as carbon source. The most active mutant V-7 showed about 6-times higher activity of beta-glucosidase than the parent strain F-522, whereas the filter paper degrading and endo-1,4-beta-D-glucanase activities increased by 45% and by almost 31%, respectively. Cellulase preparations obtained from the parent and mutant strains were then used along with Kluyveromyces fragilis cells for ethanol production from ethanol-alkali pulped straw in the simultaneous saccharification and fermentation (SSF) process. From 10% (w/v) of straw pulp (dry matter), 2.5% (w/v) ethanol was obtained at 43 degrees C after 48 h using cellulase derived from the parent strain of T. reesei. When the beta-glucosidase-hyperproducing mutant V-7 was employed, the ethanol yield in the SSF process increased to 3.4% (w/v), the reaction time was shortened to 24 h and no cellobiose was detected in straw hydrolyzates.  相似文献   

16.
A thermostable beta-glucosidase from Clostridium thermocellum which is expressed in Escherichia coli was used to determine the substrate specificity of the enzyme. A restriction map of the beta-glucosidase gene cloned in plasmid pALD7 was determined. Addition of the E. coli cell extract (containing the beta-glucosidase) to the cellulase complex from C. thermocellum increased the conversion of crystalline cellulose (Avicel) to glucose. The increase was specifically due to hydrolysis of the accumulated cellobiose. A cellulose degradation process using beta-glucosidase to assist the potent cellulase complex of C. thermocellum, as shown here can open the way for industrial saccharification of cellulose to glucose.  相似文献   

17.
Nonlinear kinetics are commonly observed in the enzymatic hydrolysis of cellulose. This nonlinearity could be explained by any or all of the following three factors: enzyme inactivation, product inhibition, or substrate heterogeneity. In this study, four different approaches were applied to test the above hypotheses using two Thermomonospora fusca endocellulases, E2 and E5. The lack of stimulation of cellulase activity by beta-glucosidase rules out the possibility of product inhibition as a cause of the observed nonlinearity. The results from the other three approaches all provide strong evidence against enzyme inactivation and strong evidence for substrate heterogeneity as the cause of the nonlinear kinetics. The most direct evidence for substrate heterogeneity is that pretreatment of swollen cellulose with either E2cd or E5cd gave a product that was hydrolyzed at a much (3- to 4-fold) slower rate than untreated swollen cellulose even though the initial treatment degraded only 15-18% of the substrate. Furthermore, the activation energy of E2 catalyzed hydrolysis of swollen cellulose increased from 10 kcal/mol for the initial rate to 29 kcal/mol for hydrolysis after 24% digestion.  相似文献   

18.
Adsorption reversibility and competition between fractionated components of the Trichoderma reesei cellulase system were studied. Specific endoglucanase (EGI), nonspecific endoglucanases (EGII, EGIII), and cellobio-hydrolase (CBHI) were previously grouped according to their hydrolytic function. At 5 degrees C, direct evidence of exchange between adsorbed and free enzyme was obtained for each component using [(3)H] and [(14)C] radiolabeled tracers. No release of bound enzymes was detected upon dilution of the free enzyme solution. In simultaneous adsorption of enzyme pairs, CBHI was shown to predominate adsorption. Endoglucanase EGI was preferentially adsorbed over EGII and EGIII. Sequential adsorption studies have shown that interaction between enzyme components largely determines the degree of their adsorption. Evidence suggests that both common and distinct adsorption sites exist and that their occupation depends on which components are involved. Predominance in adsorption by any one of the enzyme components is decreased at 50 degrees C. Light microscopy and monitoring of sugar production during cellulose hydrolysis provided evidence that reduction in the ionic strength decreases the adsorption predominance of CBHI and enhances the synergism between the cellulase components.  相似文献   

19.
Attempts to correlate the physical and chemical properties of biomass to its susceptibility to enzyme digestion are often inconclusive or contradictory depending on variables such as the type of substrate, the pretreatment conditions and measurement techniques. In this study, we present a direct method for measuring the key factors governing cellulose digestibility in a biomass sample by directly probing cellulase binding and activity using a purified cellobiohydrolase (Cel7A) from Trichoderma reesei. Fluorescence-labeled T. reesei Cel7A was used to assay pretreated corn stover samples and pure cellulosic substrates to identify barriers to accessibility by this important component of cellulase preparations. The results showed cellulose conversion improved when T. reesei Cel7A bound in higher concentrations, indicating that the enzyme had greater access to the substrate. Factors such as the pretreatment severity, drying after pretreatment, and cellulose crystallinity were found to directly impact enzyme accessibility. This study provides direct evidence to support the notion that the best pretreatment schemes for rendering biomass more digestible to cellobiohydrolase enzymes are those that improve access to the cellulose in biomass cell walls, as well as those able to reduce the crystallinity of cell wall cellulose.  相似文献   

20.
Lignocellulose containing 62% cellulose was prepared from corn residue by dilute acid hydrolysis using 5% H(2)SO(4) at 90 degrees C. The lignocellulose was then treated with a cellulose solvent consisting of a ferric sodium tartrate complex in 1.5N sodium hydroxide at levels ranging from 4:1 to 12:1 (solvent volume: corn residue lignocellulose) or a 1.5N sodium hydroxide solution alone. Subsequent hydrolysis with cellulase enzymes from Trichoderma reesei gave cellulose conversions which were two to three times higher than untreated lignocellulose (30%) and approached 90% conversion after 24 h in the best cases. It was found that increasing cellulase enzyme levels from 3.74 lU/g lignocellulose to 7.71 lU/g lignocellulose increased cellulose conversion by 50% at all pretreatment conditions, while an increase from 7.71 to 10.1 lU/g gave only an additional 5-10% increase. Pretreatment with sodium hydroxide resulted in 5-25% lower conversions than observed for cellulose treated with the solvent, depending on enzyme levels and treatment levels. At high enzyme levels, sodium hydroxide pretreatment is almost as effective in enhancing cellulose conversion after 24 h as is pretreatment using the cellulose solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号