首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integration of donor DNA in bacterial conjugation   总被引:6,自引:0,他引:6  
Conjugation between 13C15N- and 3H-labelled hybrid donors and 13C15N-labelled hybrid recipients of Escherichia coli gives rise to recombinant radioactive DNA of density greater than labelled hybrid. The donor radioactivity is present, in these molecules, in discrete heavy segments covalently attached to the light strand. When light radioactive Hfr cells are mated to heavy F? cells in light medium, the donor label appears, in DNA extracted from the F? cells, in labelled hybrid molecules. The radioactivity in these molecules is exclusively in the light strand. The insertion of donor material is thus restricted to a single newly formed strand of the recipient DNA and double-strand integrations do not occur. A temperature-sensitive recipient containing the dna B mutation ts43 accumulates single-stranded Hfr DNA if mating is carried out at the nonpermissive temperature. The formation of a complementary strand in the recipient does not, therefore, appear to be necessary for continued transfer of Hfr DNA.  相似文献   

2.
The complementary strands of adenovirus type 2 (Ad2) DNA were separated by buoyant density gradient centrifugation with poly (U, G). The complementary strand DNA was shown to remain intact through the course of strand separation. The l-strand of Ad2 DNA, appearing in the less dense complex with poly (U, G) in neutral CsCl density gradients, was shown to have a buoyant density in alkaline (pH 12.5) CsCl density gradients which is 2 to 3 mg per ml greater than that of its complement (h-strand). Renaturation of purified complementary strand DNA was observed only in mixtures of h- and l-strand DNA, and then with the second-order reaction rate expected for Ad2 DNA. Hybridization of the complementary strands of Ad2 DNA with cytoplasmic mRNA isolated from infected HeLa cells was performed in liquid phase and analyzed by hydroxylapatite chromatography. Before viral DNA synthesis (6 h after infection), 13 to 18% of the h-strand and 30 to 35% of the l-strand were represented in viral mRNA. Late (18 h) after infection the mRNA represented 20 to 25% and 63 to 68% of the h- and l-strands, respectively. Most, if not all sequences present in viral mRNA before viral DNA synthesis were also present in the cytoplasm late in infection.  相似文献   

3.
Physical Properties and Mechanism of Transfer of R Factors in Escherichia coli   总被引:26,自引:20,他引:6  
The physical properties of F-like and I-like R factors have been compared with those of the wild-type F factor in Escherichia coli K-12 unmated cells and after transfer to recipient cells by conjugation. The F-like R factor R538-1drd was found to have a molecular weight of 49 x 10(6), whereas the molecular weight of the I-like R factor R64drd11 was 76 x 10(6). The wild-type F factor, F1, had a molecular weight of 62 x 10(6). When conjugation experiments are performed by using donor strains carrying these derepressed F-like or I-like R factors, the transferred deoxyribonucleic acid can be isolated as a covalently closed circle from the recipient cells. This circular deoxyribonucleic acid was characterized by making use of the observation that the complementary strands of these R factors can be separated in a CsCl-poly (U, G) equilibrium gradient. The results of the strand-separation experiments show that only one of the complementary strands of the R factor is transferred from the donor to the recipient. With both the F-like and I-like R factors, this strand is the heavier strand in CsCl-poly (U, G). These results indicate that even though F-like and I-like R factors differ greatly in many properties (phage specificity, size, compatability, etc.), they are transferred by a similar mechanism.  相似文献   

4.
Polarity of donor DNA strand transferred into recipient during conjugation in Escherichia coli K-12 was determined by DNA-3H-RNA hybridization. Lambda prophage was used as a marker. The defective lysogen Hfr H (lambdat11) as a donor and thermosensitive F- CR34 dnaB strain as recipient were used. Two sets of hybridization experiments, with 1-strand specific lambda mRNA and lambda mRNA specific for both phage strands but with large excess of r-strand specific mRNA, were carried out. Strand 1 of lambda DNA was detected preferentially in recipient cells mated at restrictive temperature, when Hfr transferred its genophore in the order gal-lambda-bio. Thus the genophore is transferred with 5'OH at its origin.  相似文献   

5.
Separation of the complementary strands of adenovirus type 2 DNA by poly(U,G)-CsCl density gradient centrifugation permitted studies of Ad23 DNA renaturation with independently variable concentrations of each complementary strand. Single-stranded DNA was isolated by hydroxylapatite chromatography following exhaustive incubation under such conditions, and was found to selectively represent sequences of the complement present in excess during the incubation. This result was exploited in a general method for isolation of complementary strand-specific sequences of radioactively labeled Ad2 DNA or restriction enzyme fragments of Ad2 DNA. Liquid phase saturation-hybridization experiments were carried out with labeled DNA representing each complementary strand of the six endo R.EcoRI cleavage fragments of Ad2 DNA and unlabeled messenger RNA prepared from HeLa cells late after productive infections with Ad2. The results were combined with the known endo R.EcoRI cleavage map of Ad2 DNA to construct a low-resolution map showing physically separated regions, on both complementary strands of Ad2 DNA, represented in mRNA late after infection.  相似文献   

6.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

7.
The synthesis of bacteriophage G4 DNA was examined in temperature-sensitive dna mutants under permissive and nonpermissive conditions. The infecting single-stranded G4 DNA was converted to the parental replicative form (RF) at the nonpermissive temperature in infected cells containing a temperature sensitive mutation in the dnaA, dnaB, dnaC, dnaE, or dnaG gene. The presence of 30 mug of chloramphenicol or 200 mug of rifampin per ml had no effect on parental RF synthesis in these mutants. Replication of G4 double-stranded RF DNA occurred at a normal rate in dnaAts cells at the nonpermissive temperature, but the rate was greatly reduced in cells containing a temperature-sensitive mutation in the dnaB, dnaC, dnaE, or dnaG gene. RF DNA replicated at normal rates in revertants of these dna temperature-sensitive host cells. The simplest interpretation of these observations is that none of the dna gene products tested is essential for the synthesis of the complementary DNA strand on the infecting single-stranded G4 DNA, whereas the dnaB, dnaC, dnaE, (DNA polymerase III), and dnaG gene products are all essential for replication of the double-stranded G4 RF DNA. The alternate possibility that one or more of the gene products are actually essential for G4 parental RF synthesis, even though this synthesis is not defective in the mutant hosts, is also discussed.  相似文献   

8.
Replicative intermediates in UV-irradiated simian virus 40   总被引:5,自引:0,他引:5  
We have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [3H]thymidine, and isolated by centrifugation in CsCl/ethidium bromide gradients followed by BND-cellulose chromatography. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h, by which time the size of the newly-synthesized DNA exceeded the interdimer distance. No significant excision of dimers from parental strands in either replicative intermediates or Form I (closed circular) DNA molecules was detected. These data are consistent with the hypothesis that replication forks are temporarily blocked by dimers encountered on the leading strand side of the fork, but that daughter strand continuity opposite dimers is eventually established. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strands contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from UV-damaged SV40 replicative intermediates.  相似文献   

9.
A single strand of plasmid DNA is transferred during conjugation. We examined the mechanism of complementary strand synthesis in recipient cells following conjugative mobilization of derivatives of the IncQ plasmid R1162. A system for electroporation of donor cells, followed by immediate mating, was used to eliminate plasmid-specific replicative functions. Under these conditions, Escherichia coli recipients provided a robust mechanism for initiation of complementary strand synthesis on transferred DNA. In contrast, plasmid functions were important for efficient strand replacement in recipient cells of Salmonella enterica serovar Typhimurium. The mobilizing vector for R1162 transfer, the IncP1 plasmid R751, encodes a DNA primase with low specificity for initiation. This protein increased the frequency of transfer of R751 into Salmonella, but despite its low specificity, it was inactive on the R1162 derivatives. The R751 primase was slightly inhibitory for the transfer of both R751 and R1162 into E. coli. The results show that there is a chromosomally encoded mechanism for complementary strand synthesis of incoming transferred DNA in E. coli, while plasmid-specific mechanisms for this synthesis are important in Salmonella.  相似文献   

10.
Five distinct DNA replicating intermediates have been separated from lysates of bacteriophage G4-infected cells pulse-labelled during the period of replicative form synthesis using propidium diiodide/caesium chloride gradients. These are a partially single-stranded theta structure that is labelled in both the viral and complementary DNA strands; partially single-stranded circles, some with an unfinished viral DNA strand (25%) and some with an unfinished complementary DNA strand (75%); replicative form II(RFII) and replicative form I(RFI) DNA labelled only in the complementary DNA strand. To explain the pulse-label data a model is proposed in which G4 replicative form replication takes place by a displacement mechanism in which synthesis of the new viral DNA strand displaces the old viral DNA strand as a single-stranded DNA loop (D-loop) and when the displacement reaches half way round the molecule (the origin of synthesis of the G4 viral and complementary DNA strands are on opposite sides of the genome, Martin &; Godson 1977) synthesis of the complementary DNA strand starts, but in the opposite direction. Strand separation of the parent helix runs ahead of DNA synthesis, releasing two partially single-stranded circles from the replicating structure which then complete their replication as free single-stranded DNA circles. No evidence was found to support a rolling circle displacement mechanism of G4 replicative form synthesis.  相似文献   

11.
12.
The opposite strands of the ColE1 and ColE3 plasmids were isolated as circular single-stranded DNA molecules. These molecules were compared with M13 and phi X174 viral DNA with respect to their capacity to function as templates for in vitro DNA synthesis by a replication enzyme fraction from Escherichia coli. It was found for both ColE plasmids that the conversion of H as well as L strands to duplex DNA molecules closely resembles phi X174 complementary strand synthesis and occurs by a rifampicin-resistant priming mechanism involving the dnaB, dnaC, and dnaG gene products. Restriction analysis of partially double-stranded intermediates indicates that preferred start sites for DNA synthesis are present on both strands of the ColE1 HaeII-C fragment. Inspection of the nucleotide sequence of this region reveals structural similarities with the origin of phi X174 complementary strand synthesis. We propose that the rifampicin-resistant initiation site (rri) in the ColE1 L strand is required for the priming of discontinuous lagging strand synthesis during vegetative replication and that the rri site in the H strand is involved in the initiation of L strand synthesis during conjugative transfer.  相似文献   

13.
The broad host range IncP (IncP1) plasmids of gram-negative bacteria encode DNA primases that are involved in conjugal DNA synthesis. The primase of RK2/RP4 is required for efficient DNA transfer to certain gram-negative bacteria, indicating that the enzyme primes complementary strand synthesis in the recipient. In vitro, the primase initiates synthesis of oligoribonucleotides at 3'-dGdT-5' dinucleotides on the template strand. In this report, replication-defective M13 phage are used to assay the ability of the RK2-encoded primase to initiate complementary strand synthesis in vivo on single-strand templates containing the RK2 origin of conjugal transfer (oriT) or the RK2 origin of vegetative replication (oriV). The results show that sequences from either strand of the oriT region serve as efficient substrates for the RK2 primase and can enhance the growth of the defective M13 vectors delta E101 and delta Elac to levels approaching wild-type. The primise-oriT interaction appeared specific, since neither the oriV sequence nor another RK2 region, trfB, significantly enhanced growth of the defective phage, either in the presence or in the absence of the primase. In contrast to ColEl and F, this study also shows that the oriV region of RK2 lacks sites that are recognized by the host-specified DNA priming systems. The results suggest that the oriT region contains sites on both DNA strands that are efficient substrates for the plasmid-encoded primase, facilitating initiation of complementary strand DNA synthesis in both donor and recipient during conjugation.  相似文献   

14.
15.
Rose Sheinin 《Cell》1976,7(1):49-57
Temperature-sensitive ts A1S9 mouse L cells synthesize DNA apparently normally for 6–8 hr upon incubation at 38.5°C. Thereafter, these cells are able to perform limited polydeoxyribonucleotide chain synthesis at the high temperature, but are unable to convert newly replicated small single-strand segments of DNA (of the order of molecular weight 106 daltons) to large molecular weight chromosomal DNA. Data obtained are compatible with a model which suggests that ts A1S9 cells are able to carry out most individual reactions of DNA synthesis at the high temperature, but are temperature-sensitive in a protein which participates in the joining of small DNA segments to make chromosomal DNA strands. When cells are reincubated at a permissive temperature, after the temperature-sensitive lesion has been established, they recover the latter capability several hours before they are able once again to synthesize DNA at normal rates.  相似文献   

16.
P J Flory  Jr 《Nucleic acids research》1977,4(5):1449-1464
The discontinuous synthesis of the complementary strands of polyoma DNA in isolated nuclei has been studied by hybridization techniques. The relative amounts of the newly synthesized complementary strands were compared by separately annealing them to denatured HpaII restriction fragments. In every case an excess (1.4- to 2.4-fold) of short pieces of the strand growing in the 3' leads to 5' direction was found.  相似文献   

17.
In vivo methylation of replicating bacteriophage phi chi174 DNA   总被引:4,自引:0,他引:4  
The pattern of DNA methylation during the infection of Escherichia coli C cells with bacteriophage φX174, has been studied. In vivo methylated DNA was isolated and analyzed using the following techniques: velocity sedimentation through neutral and alkaline sucrose gradients, isopycnic analysis, chromatography on benzoylated DBAE-cellulose columns and specific enzymatic digestion. All these analytical methods indicated that the DNA molecules that are methylated during the process of phage φX DNA replication are the replicating intermediates composed of a circular complementary strand and a viral strand larger than one genome length. It is concluded that methylation occurs on the nascent DNA strand of the replicating intermediates involved in the synthesis of progeny single-stranded DNA.  相似文献   

18.
R64-11(+) donor cells that are thermosensitive for vegetative DNA replication will synthesize DNA at the restrictive temperature when recipient minicells are present. This is conjugal DNA replication because it is R64-11 DNA that is being synthesized and there is no DNA synthesis if minicells that cannot be recipients of R64-11 DNA are used. The plasmid DNA present in the donor cells before mating is transferred to recipient minicells within the first 20 min of mating, but additional copies of plasmid DNA synthesized during the mating continue to be transferred for at least 90 min. However, the transfer of R64-11 DNA to minicells is not continuous because the plasmid DNA in minicells is the size of one R64-11 molecule or smaller, and there are delays between the rounds of plasmid transfer. DNA is synthesized in minicells during conjugation, but this DNA has a molecular weight much smaller than that of R64-11. Thus, recipient minicells are defective and are not able to complete the synthesis of a DNA strand complementary to the single-stranded R64-11 DNA received from the donor cell.  相似文献   

19.
A temperature-sensitive mutant of simian virus 40 (SV40), ts(*)101, has been characterized during productive infection in monkey kidney cells. The mutant virion can adsorb to and penetrate the cell normally at the restrictive temperature, but cannot induce the synthesis of cellular deoxyribonucleic acid (DNA) nor initiate the synthesis of SV40-specific tumor, virion, or U antigens or viral DNA. First-cycle infection with purified ts(*)101 DNA is normal at the restrictive temperature, but the resulting progeny virions are still temperature-sensitive. The mutant neither complements nor inhibits other temperature-sensitive SV40 mutants or wild-type virions. The affected protein in the ts(*)101 mutant may be a regulatory structural protein, possibly a core protein, that is interacting with the viral DNA.  相似文献   

20.
Summary We have isolated new mutants of the yeast Saccharomyces cerevisiae that are defective in mitotic DNA synthesis. This was accomplished by directly screening 1100 newly isolated temperature-sensitive yeast clones for DNA synthesis defects. Ninety-seven different mutant strains were identified. Approximately half had the fast-stop DNA synthesis phenotype; synthesis ceased quickly after shifting an asynchronous population of cells to the restrictive temperature. The other half had an intermediate-rate phenotype; synthesis continued at a reduced rate for at least 3 h at the restrictive temperature. All of the DNA synthesis mutants continued protein synthesis at the restrictivetemperature. Genetic complementation analysis of temperature-sensitive segregants of these strains defined 60 apparently new complementation groups. Thirty-five of these were associated with the fast-stop phenotype, 25 with the intermediate-rate phenotype. The fast-stop groups are likely to include many genes whose products play direct roles in mitotic S phase DNA synthesis. Some of the intermediate-rate groups may be associated with S phase as well. This mutant collection should be very useful in the identification and isolation of gene products necessary for yeast DNA synthesis, in the isolation of the genes themselves, and in further analysis of the DNA replication process in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号