首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The superfamily of G protein-coupled receptors (GPCRs) is the largest and most diverse group of transmembrane proteins involved in signal transduction. Many of the over 1000 human GPCRs represent important pharmaceutical targets. However, despite high interest in this receptor family, no high-resolution structure of a human GPCR has been resolved yet. This is mainly due to difficulties in obtaining large quantities of pure and active protein. Until now, only a high-resolution x-ray structure of an inactive state of bovine rhodopsin is available. Since no structure of an active state has been solved, information of the GPCR activation process can be gained only by biophysical techniques. In this review, we first describe what is known about the ground state of GPCRs to then address questions about the nature of the conformational changes taking place during receptor activation and the mechanism controlling the transition from the resting to the active state. Finally, we will also address the question to what extent information about the three-dimensional GPCR structure can be included into pharmaceutical drug design programs.  相似文献   

2.
Abstract

The superfamily of G protein‐coupled receptors (GPCRs) is the largest and most diverse group of transmembrane proteins involved in signal transduction. Many of the over 1000 human GPCRs represent important pharmaceutical targets. However, despite high interest in this receptor family, no high‐resolution structure of a human GPCR has been resolved yet. This is mainly due to difficulties in obtaining large quantities of pure and active protein. Until now, only a high‐resolution x‐ray structure of an inactive state of bovine rhodopsin is available. Since no structure of an active state has been solved, information of the GPCR activation process can be gained only by biophysical techniques. In this review, we first describe what is known about the ground state of GPCRs to then address questions about the nature of the conformational changes taking place during receptor activation and the mechanism controlling the transition from the resting to the active state. Finally, we will also address the question to what extent information about the three‐dimensional GPCR structure can be included into pharmaceutical drug design programs.  相似文献   

3.
G protein‐coupled receptors (GPCRs) constitute the largest family of cell surface receptors that mediate numerous cell signaling pathways, and are targets of more than one‐third of clinical drugs. Thanks to the advancement of novel structural biology technologies, high‐resolution structures of GPCRs in complex with their signaling transducers, including G‐protein and arrestin, have been determined. These 3D complex structures have significantly improved our understanding of the molecular mechanism of GPCR signaling and provided a structural basis for signaling‐biased drug discovery targeting GPCRs. Here we summarize structural studies of GPCR signaling complexes with G protein and arrestin using rhodopsin as a model system, and highlight the key features of GPCR conformational states in biased signaling including the sequence motifs of receptor TM6 that determine selective coupling of G proteins, and the phosphorylation codes of GPCRs for arrestin recruitment. We envision the future of GPCR structural biology not only to solve more high‐resolution complex structures but also to show stepwise GPCR signaling complex assembly and disassembly and dynamic process of GPCR signal transduction.  相似文献   

4.
Heterotrimeric G proteins (Gα, Gβ/Gγ subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane α-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Gα subunit. This leads to the dissociation of Gβ/Gγ dimer from Gα. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Gα-GTP is hydrolyzed to GDP and Gα becomes inactive (Gα-GDP), which leads to its re-association with the Gβ/Gγ dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.Key words: heterotrimeric G proteins, GPCRs, seven-transmembrane receptors, signal transduction, stress signaling  相似文献   

5.
G protein‐coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor docking site. The crux of this docking site is an extended N‐terminal helix that bridges the large and small lobes of the kinase domain and lies adjacent to a basic surface of the protein proposed to bind anionic phospholipids. Mutation of exposed, hydrophobic residues in the N‐terminal helix selectively inhibits receptor, but not peptide phosphorylation, suggesting that these residues interact directly with GPCRs. Our structural and biochemical results thus provide an explanation for how receptor recognition, phospholipid binding, and kinase activation are intimately coupled in GRKs.  相似文献   

6.
G protein-coupled receptors (GPCRs) mediate diverse signaling processes, including olfaction. G protein-coupled receptor kinases (GRKs) are important regulators of G protein signal transduction that specifically phosphorylate activated GPCRs to terminate signaling. Despite previously described roles for GRKs in GPCR signal downregulation, animals lacking C. elegans G protein-coupled receptor kinase-2 (Ce-grk-2) function are not hypersensitive to odorants. Instead, decreased Ce-grk-2 function in adult sensory neurons profoundly disrupts chemosensation, based on both behavioral analysis and Ca(2+) imaging. Although mammalian arrestin proteins cooperate with GRKs in receptor desensitization, loss of C. elegans arrestin-1 (arr-1) does not disrupt chemosensation. Either overexpression of the C. elegans Galpha subunit odr-3 or loss of eat-16, which encodes a regulator of G protein signaling (RGS) protein, restores chemosensation in Ce-grk-2 mutants. These results demonstrate that loss of GRK function can lead to reduced GPCR signal transduction and suggest an important role for RGS proteins in the regulation of chemosensation.  相似文献   

7.
Sherrill JD  Miller WE 《Life sciences》2008,82(3-4):125-134
Members of the herpesvirus family, including human cytomegalovirus (HCMV) and Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8), encode G protein-coupled receptor (GPCR) homologs, which strongly activate classical G protein signal transduction networks within the cell. In animal models of herpesvirus infection, the viral GPCRs appear to play physiologically important roles by enabling viral replication within tropic tissues and by promoting reactivation from latency. While a number of studies have defined intracellular signaling pathways activated by herpesviral GPCRs, it remains unclear if their physiological function is subjected to the process of desensitization as observed for cellular GPCRs. G protein-coupled receptor kinases (GRK) and arrestin proteins have been recently implicated in regulating viral GPCR signaling; however, the role that these desensitization proteins play in viral GPCR function in vivo remains unknown. Here, we review what is currently known regarding viral GPCR desensitization and discuss potential biological ramifications of viral GPCR regulation by the host cell desensitization machinery.  相似文献   

8.
Yeagle PL  Choi G  Albert AD 《Biochemistry》2001,40(39):11932-11937
Activation of G-protein coupled receptors (GPCR) is not yet understood. A recent structure showed most of rhodopsin in the ground (not activated) state of the GPCR, but the cytoplasmic face, which couples to the G protein in signal transduction, was not well-defined. We have determined an experimental three-dimensional structure for rhodopsin in the unactivated state, which shows good agreement with the crystal structure in the transmembrane domain. This new structure defines the cytoplasmic face of rhodopsin. The G-protein binding site can be mapped. The same experimental approach yields a preliminary structure of the cytoplasmic face in the activated (metarhodopsin II) receptor. Differences between the two structures suggest how the receptor is activated to couple with transducin.  相似文献   

9.
G protein-coupled receptors (GPCRs) play a major role in intercellular communication by binding small diffusible ligands (agonists) at the extracellular surface. Agonist-binding induces a conformational change in the receptor, which results in the binding and activation of heterotrimeric G proteins within the cell. Ten agonist-bound structures of non-rhodopsin GPCRs published last year defined for the first time the molecular details of receptor activated states and how inverse agonists, partial agonists and full agonists bind to produce different effects on the receptor. In addition, the structure of the β(2)-adrenoceptor coupled to a heterotrimeric G protein showed how the opening of a cleft in the cytoplasmic face of the receptor as a consequence of agonist binding results in G protein coupling and activation of the G protein.  相似文献   

10.
Park PS  Filipek S  Wells JW  Palczewski K 《Biochemistry》2004,43(50):15643-15656
G protein-coupled receptor (GPCR)-mediated signal transduction has been studied for more than a century. Despite the intense focus on this class of proteins, a molecular understanding of what constitutes the functional form of the receptor is still uncertain. GPCRs have traditionally been conceptualized as monomeric proteins, and this view has changed little over the years until relatively recently. Recent biochemical and biophysical studies have challenged this traditional concept, and point instead to a mechanistic view of signal transduction wherein the receptor functions as an oligomer. Cooperative interactions within such an oligomeric array may be critical for the propagation of an external signal across the cell membrane and to the G protein, and may therefore underlie the mechanistic basis of signaling.  相似文献   

11.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是具有7个跨膜螺旋的蛋白质受体,是人体内最大的蛋白质超家族.GPCRs能调控细胞周期,参与多种植物信号通路以及影响一系列的代谢和分化活动.简要介绍了GPCR和G蛋白介导的信号转导机制,GPCRs的结构和植物GPCR及其在植物跨膜信号转导中的作用,并对GPCR的信号转导机制及植物抗病反应分子机制的研究提出展望.  相似文献   

12.
A key step in transmembrane (TM) signal transduction by G-protein-coupled receptors (GPCRs) is the ligand-induced conformational change of the receptor, which triggers the activation of a guanine nucleotide-binding protein. GPCRs contain a seven-TM helical structure essential for signal transduction in response to a large variety of sensory and hormonal signals. Primary structure comparison of GPCRs has shown that the second TM helix contains a highly conserved Asp residue, which is critical for agonist activation in these receptors. How conformational changes in TM2 relate to signal transduction by a GPCR is not known, because activation-induced conformational changes in TM2 helix have not been measured. Here we use modification of reporter cysteines to measure water accessibility at specific residues in TM2 of the type 1 receptor for the octapeptide hormone angiotensin II. Activation-dependent changes in the accessibility of Cys76 on TM2 were measured in constitutively activated mutants. These changes were directly correlated with measurement of function, establishing the link between physical changes in TM2 and function. Accessibility changes were measured at several consecutive residues on TM2, which suggest that TM2 undergoes a transmembrane movement in response to activation. This is the first report of in situ measurement of TM2 movement in a GPCR.  相似文献   

13.
G蛋白偶联受体(GPCR)是细胞膜上最大的一类受体,其通过构象变化激活下游G蛋白从而介导细胞响应多种来自内源和外界环境中的信号。自GPCR被发现以来,研究者就一直在努力解析GPCR的构象,x射线晶体衍射技术和GPCR蛋白质结晶技术的发展使得越来越多的GPCR单体在静息状态,以及与不同配体甚至G蛋白结合的晶体结构被成功解析。另一方面,FRET和电子显微技术的运用得到了GPCR二聚化和多聚化的多方面证据。本文将结合近年来该领域的进展,对GPCR寡聚体的结构和构象变化予以系统的综述,这些成果为研究GPCR的功能机制及其特异性的靶点药物开发提供了重要的基础。  相似文献   

14.
The first crystal structure of a G protein‐coupled receptor (GPCR) was that of the bovine rhodopsin, solved in 2000, and is a light receptor within retina rode cells that enables vision by transducing a conformational signal from the light‐induced isomerization of retinal covalently bound to the receptor. More than 7 years after this initial discovery and following more than 20 years of technological developments in GPCR expression, stabilization, and crystallography, the high‐resolution structure of the adrenaline binding β2‐adrenergic receptor, a ligand diffusible receptor, was discovered. Since then, high‐resolution structures of more than 53 unique GPCRs have been determined leading to a significant improvement in our understanding of the basic mechanisms of ligand‐binding and ligand‐mediated receptor activation that revolutionized the field of structural molecular pharmacology of GPCRs. Recently, several structures of eight unique lipid‐binding receptors, one of the most difficult GPCR families to study, have been reported. This review presents the outstanding structural and pharmacological features that have emerged from these new lipid receptor structures. The impact of these findings goes beyond mechanistic insights, providing evidence of the fundamental role of GPCRs in the physiological integration of the lipid signaling system, and highlighting the importance of sustained research into the structural biology of GPCRs for the development of new therapeutics targeting lipid receptors.  相似文献   

15.
G protein-coupled receptors (GPCRs) are ubiquitous and essential in modulating virtually all physiological processes. These receptors share a similar structural design consisting of the seven-transmembrane alpha-helical segments. The active conformations of the receptors are stabilized by an agonist and couple to structurally highly conserved heterotrimeric G proteins. One of the most important unanswered questions is how GPCRs couple to their cognate G proteins. Phototransduction represents an excellent model system for understanding G protein signaling, owing to the high expression of rhodopsin in rod photoreceptors and the multidisciplinary experimental approaches used to study this GPCR. Here, we describe how a G protein (transducin) docks on to an oligomeric GPCR (rhodopsin), revealing structural details of this critical interface in the signal transduction process. This conceptual model takes into account recent structural information on the receptor and G protein, as well as oligomeric states of GPCRs.  相似文献   

16.
Choi G  Landin J  Galan JF  Birge RR  Albert AD  Yeagle PL 《Biochemistry》2002,41(23):7318-7324
The structural changes that accompany activation of a G-protein coupled receptor (GPCR) are not well understood. To better understand the activation of rhodopsin, the GPCR responsible for visual transduction, we report studies on the three-dimensional structure for the activated state of this receptor, metarhodopsin II. Differences between the three-dimensional structure of ground state rhodopsin and metarhodopsin II, particularly in the cytoplasmic face of the receptor, suggest how the receptor is activated to couple with transducin. In particular, activation opens a groove on the surface of the receptor that could bind the N-terminal helix of the G protein, transducin alpha.  相似文献   

17.
G蛋白偶联受体(G protein-coupled receptor,GPCR)在细胞信号转导过程中发挥关键的生理学功能,是极其重要的药物靶标,其三维结构信息对功能研究以及新药研发具有十分重要的意义。近年来,新技术的发展和应用使GPCR的结构生物学研究发生了跨越式的发展,本文简要回顾这些新的技术和方法以及已解析的GPCR三维结构,并以CCR5和P2Y12R两种受体的结构为例来具体阐明现阶段GPCR结构生物学研究的内容和意义。  相似文献   

18.
Detection of protein–protein interactions involved in signal transduction in live cells and organisms has a variety of important applications. We report a fluorogenic assay for G protein‐coupled receptor (GPCR)–β‐arrestin interaction that is genetically encoded, generalizes to multiple GPCRs, and features high signal‐to‐noise because fluorescence is absent until its components interact upon GPCR activation. Fluorescence after protease‐activated receptor‐1 activation developed in minutes and required specific serine–threonine residues in the receptor carboxyl tail, consistent with a classical G protein‐coupled receptor kinase dependent β‐arrestin recruitment mechanism. This assay provides a useful complement to other in vivo assays of GPCR activation.  相似文献   

19.
Remarkable progress has been made in the field of G protein-coupled receptor (GPCR) structural biology during the past four years. Several obstacles to generating diffraction quality crystals of GPCRs have been overcome by combining innovative methods ranging from protein engineering to lipid-based screens and microdiffraction technology. The initial GPCR structures represent energetically stable inactive-state conformations. However, GPCRs signal through different G protein isoforms or G protein-independent effectors upon ligand binding suggesting the existence of multiple ligand-specific active states. These active-state conformations are unstable in the absence of specific cytosolic signaling partners representing new challenges for structural biology. Camelid single chain antibody fragments (nanobodies) show promise for stabilizing active GPCR conformations and as chaperones for crystallogenesis.  相似文献   

20.
G protein-coupled receptor (GPCR) activation mediated by ligand-induced structural reorganization of its helices is poorly understood. To determine the universal elements of this conformational switch, we used evolutionary tracing (ET) to identify residue positions commonly important in diverse GPCRs. When mapped onto the rhodopsin structure, these trace residues cluster into a network of contacts from the retinal binding site to the G protein-coupling loops. Their roles in a generic transduction mechanism were verified by 211 of 239 published mutations that caused functional defects. When grouped according to the nature of the defects, these residues sub-divided into three striking sub-clusters: a trigger region, where mutations mostly affect ligand binding, a coupling region near the cytoplasmic interface to the G protein, where mutations affect G protein activation, and a linking core in between where mutations cause constitutive activity and other defects. Differential ET analysis of the opsin family revealed an additional set of opsin-specific residues, several of which form part of the retinal binding pocket, and are known to cause functional defects upon mutation. To test the predictive power of ET, we introduced novel mutations in bovine rhodopsin at a globally important position, Leu-79, and at an opsin-specific position, Trp-175. Both were functionally critical, causing constitutive G protein activation of the mutants and rapid loss of regeneration after photobleaching. These results define in GPCRs a canonical signal transduction mechanism where ligand binding induces conformational changes propagated through adjacent trigger, linking core, and coupling regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号