首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescent probes, N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine and lissamine-rhodamine-B-sulfonylphosphatidylethanolamine, were inserted at the appropriate surface density into membranes of reconstituted Sendai virus envelopes, thus allowing transfer of energy between the fluorescent probes. In addition, only the fluorescent molecule N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine was inserted into the viral envelopes, resulting in self-quenching. Incubation of fluorescent, reconstituted Sendai virus envelopes with human erythrocyte ghosts resulted in either reduction in the efficiency of energy transfer or in fluorescence dequenching. No reduction in the efficiency of energy transfer or fluorescence dequenching was observed when fluorescent, reconstituted Sendai virus envelopes were incubated with glutaraldehyde-fixed or desialized human erythrocyte ghosts. Similarly, no change in the fluorescence value was observed when nonfusogenic, reconstituted Sendai virus envelopes were incubated with human erythrocyte ghosts. These results clearly show that reduction in the efficiency of energy transfer or dequenching is due to virus-membrane fusion and not to lipid-lipid exchange. Incubation of reconstituted Sendai virus envelopes, carrying inserted N-4-nitrobenzo-2-oxa-1,3-diazolephosphatidylethanolamine, with cultured cells also resulted in a significant and measurable dequenching. However, incubation of nonfusogenic, fluorescent reconstituted Sendai virus envelopes with hepatoma tissue culture cells also resulted in fluorescent dequenching, the degree of which was about 50% of that observed with fusogenic, fluorescent reconstituted viral envelopes. It is therefore possible that, in addition to virus-membrane fusion, endocytosis of fluorescent viral envelopes results in fluorescence dequenching as well.  相似文献   

2.
The fluorescent phospholipid analogue 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3- diazole)aminocaproylphosphatidylcholine (C6-NBD-PC), which incorporates into cell membranes, is employed as a substrate for phospholipase A2 (PLA2) in intact cells. The interaction of this substrate with the cells produces only one fluorescent product; the fatty acid C6-NBD-FA, which does not incorporate into other lipids, and is not further metabolized. The product, a hydrophilic fatty acid, is separated from the substrate by aqueous: organic solvent phase separation. Using this method, the fatty acid produced is fully recovered and its amount, as measured by its fluorescence intensity, is a direct measure of the cell membrane PLA2 activity.  相似文献   

3.
A continuous fluorescence assay was adapted to the measurement of the phospholipase reaction of lecithin cholesterol acyltransferase (LCAT). The fluorescent phospholipid 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl phosphatidylcholine (C6-NBD-PC) in micelle form reacted with LCAT to yield NBD-caproic acid, resulting in up to 5-fold increases in fluorescence in 30 min. The reaction rates were optimal in mixtures containing 0.1 M NaCl and 4 mM beta-mercaptoethanol at 37 degrees C. Apolipoprotein A-I did not activate the enzyme and bovine serum albumin bound monomeric substrate and interfered with the fluorescence assay. Under similar reaction conditions, bee venom phospholipase A2 was almost 100-fold more reactive than LCAT.  相似文献   

4.
Fluorescently labeled (bearing N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine (N-NBD-PE)) reconstituted Sendai virus envelopes (RSVE) were used to study fusion between the viral envelopes and cultured living cells such as lymphoma, Friend erythroleukemia cells (FELC) and L cells. Incubation of fusogenic viruses with the above cell lines resulted in a relatively high degree (40-45%) of fluorescence dequenching. On the other hand, incubation of unfusogenic (trypsin or phenylmethylsulfonylfluoride (PMSF)-treated) RSVE with these cells led to very little (6-9%) fluorescence dequenching. The degree of fluorescence dequenching was linearly correlated to the surface density of the virus-inserted N-NBD-PE molecules. Fluorescence photobleaching recovery experiments showed that fusion of fluorescent RSVE with FELC resulted in an infinite dilution of the fluorescent molecules in the recipient cell membranes. The fluorescent probe 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (N-NBD-Cl) was covalently attached to envelopes of intact Sendai virions without significantly impairing their biological activity. Incubation of fluorescently labeled, intact Sendai virions with cultured cells resulted in about 20% fluorescence dequenching. The present data clearly indicate that fluorescently labeled Sendai virions can be used for a quantitative estimation of the degree of virus-membrane fusion.  相似文献   

5.
A method for producing lipid vesicles containing fluorescent phospholipid analogues localized to the inner leaflet of their membrane was developed. Incubation of a 450-fold molar excess of serum albumin with lipid vesicles symmetrically labeled with 1 mol % 1-palmitoyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazolyl)amino-caproyl phosphatidylcholine resulted in the removal of 99% of the fluorescent lipid from the outer leaflet. Asymmetrically labeled vesicles were separated from albumin/lipid complexes by gel filtration chromatography. Vesicles prepared in this manner were unable to transfer fluorescent lipid to cells during liposome-cell incubations. Liposomes asymmetrically labeled with other 4-nitrobenzo-2-oxa-1,3-diazole (NBD)-phospholipid analogues were also prepared. Removal of amino-dodecanoyl-NBD-labeled lipids from the outer leaflet of liposomes required three times more bovine serum albumin, and 48 h of incubation. This method can be used to produce large amounts of asymmetrically labeled liposomes suitable for use in investigating a variety of membrane phenomena.  相似文献   

6.
L C Cantley  G G Hammes 《Biochemistry》1975,14(13):2976-2981
The method of fluorescence energy transfer is used to measure the distance from the tight nucleotide binding sites to the 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reactive sites on solubilized spinach chloroplast coupling factor 1 (CF1). The fluorescent adenine nucleotide analogs 1,N-6-ethenoadenosine diphosphate and 1,N-6-ethenoadenylyl imidodiphosphate were used as donors and 4-nitrobenzo-2-oxa-1,3-diazole bound to a tyrosine group and to an amino group were used as acceptors of energy transfer. Using three different donor-acceptor pairs, the distance measured varied from 38 to 43 A assuming both donor sites are equidistant from the acceptor site. A model is proposed for the location of the tight nucleotide binding sites and the active site on the alpha and beta subunits of CF1.  相似文献   

7.
We have observed distinct differences in the polarization of fluorescence and temperature dependent emission intensity of the highly fluorescent phospholipid derivative (1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)--aminocaproyl phosphatidylcholine (NBD-PC), when incorporated in the plasma membranes of normal and cystic fibrosis fibroblasts. Fluorescence polarization measurements indicate that the fluorochrome has a much higher degree of rotational mobility in cystic fibrosis fibroblasts as compared with normal cells. Temperature dependent transitions in the emission intensity of NBD-PC incorporated in normal fibroblasts are indicated at 17.7 and 21.2° C while the abnormal cell membranes apparently undergo transitions at 8.7 and 13.5° C. These differences might be due to changes in plasma membrane composition and/or organization, in the case of the cystic fibrosis cells.  相似文献   

8.
In this paper we report on the uptake and distribution of an exogenously supplied fluorescent phosphatidic acid analogue by Chinese hamster fibroblasts. Under appropriate in vitro incubation conditions, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidic acid was rapidly and preferentially transferred from phospholipid vesicles to cells at 2 degrees C. However, unlike similar fluorescent derivatives of phosphatidylcholine and phosphatidylethanolamine that remain restricted to the plasma membrane under such incubation conditions (Struck, D. K., and R. E. Pagano. 1080. J. Biol. Chem. 255:5405--5410), most of the phosphatidic acid-derived fluorescence was localized at the nuclear membrane, endoplasmic reticulum, and mitochondria. This was shown by labeling cells with rhodamine- containing probes specific for mitochondria or endoplasmic reticulum, and comparing the patterns of intracellular NBD and rhodamine fluorescence. Extraction and analysis of the fluorescent lipids associated with the cells after treatment with vesicles at 2 degrees or 37 degrees C revealed that a large fraction of the fluorescent phosphatidic acid was converted to fluorescent diglyceride, phosphatidylcholine, and triglyceride. Our findings suggest that fluorescent phosphatidic acid may be useful in correlating biochemical studies of lipid metabolism in cultured cells and studies of the Intracellular localization of the metabolites by fluorescence microscopy. In addition, this compound provides a unique method for visualizing the endoplasmic reticulum in living cells.  相似文献   

9.
1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidyl choline, (NBD-PC) was prepared by alkylation of ?-amino caproic acid with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1), followed by esterification of lysophosphatidylcholine. The compound was purified by silicic acid chromatography, and exhibited a single spot on thin layer chromatography using acidic, basic and neutral solvent systems, when visualized by UV, molybdate spray, primuline, or charring. The UV-visible absorption spectrum, and the uncorrected fluorescence excitation spectrum of NBD-PC in absolute ethanol showed maxima at approximately 340 and 460 nm, while the fluorescence emission spectrum showed a single peak at 525 nm. Fluorescence intensity and emission maximum wavelength of NBD-PC are strongly dependent on solvent dielectric constant, and the relative fluorescent intensity of NBD-PC in absolute ethanol is directly proportional to its concentration from 1 ng/ml to approximately 3 μg/ml. Incorporation of NBD-PC into membranes of human lymphocytes cultures in the presence or absence of phytohemagglutinin (PHA) resulted in a marked increase in the relative fluorescent intensity of the bound fluorochrome, and a 15 nm blue shift in its emission maximum wavelength. Fluorescence titration data indicate that the unstimulated lymphocytes bound 912 pmoles NBD-PC/mg protein with an association constant of 3.45 × 107 M, while the PHA stimulated cells bound 1200 pmoles NBD-PC/mg protein with an association constant of 2.82 × 107 M. The temperature dependence of the fluorescent intensity of NBD-PC incorporated in control, and PHA stimulated lymphocytes showed discontinuities at 15 and 24 °C respectively. Fluorescence polarization of NBD-PC incorporated in the membranes of stimulated lymphocytes was greater than the polarization of the fluorochrome in non-stimulated cells, suggesting that the plasma membranes of PHA stimulated lymphocytes contain regions of higher microviscosity.  相似文献   

10.
Myelin basic protein-enhanced fusion of membranes   总被引:2,自引:0,他引:2  
Myelin basic protein caused rapid aggregation of vesicles containing acidic phospholipids. Aggregation could be reversed by trypsin digestion of the myelin basic protein. Aggregated vesicles containing gel phase phospholipids or vesicles containing greater than 15 mol% lysolecithin underwent fusion. The extent of fusion was measured by irreversible changes in the light-scattering intensities or diffusion coefficients of the vesicles. Fusion was also measured by the fluorescence quenching which occurred when vesicles containing a covalently bound fluorophore. N-4-nitrobenzo-2-oxa-1,3-diazole, were fused with vesicles containing the covalently bound spin label, 4,4-dimethyl-oxazolidine-N-oxyl. The kinetics of fusion were first order in phospholipid and had half-times of 0.5-5 min depending on lysolecithin composition. This protein-enhanced membrane fusion may provide a valuable model system for studying some types of biological membrane fusions.  相似文献   

11.
The sulfhydryl groups of soluble and membrane-bound F1 adenosine triphosphatase of Escherichia coli were modified by reaction with the fluorescent thiol reagents 5-iodoacetamidofluorescein, 2-[(4'-iodoacetamido)anilino]naphthalene-6-sulfonic acid 4-[N-(iodoacetoxy)ethyl-N-methyl]amino-7-nitrobenzo-2-oxa-1,3-d iaz ole and 2-[(4'-maleimidyl)anilino]naphthalene-6-sulfonic acid. Whereas gamma and delta subunits were always labeled by these reagents, the beta subunit reacted preferentially in the soluble enzyme, and the alpha subunit in the membrane-bound enzyme. This suggests that the soluble enzyme undergoes a conformational change on binding to the membrane. The three beta subunits of the soluble ATPase did not react with chemical reagents in a similar manner. One beta subunit was cross-linked to the epsilon subunit on treatment of the ATPase with 1-ethyl-3-[3-(dimethyl-amino)propyl]carbodiimide, as observed previously by L?tscher et al. [Biochemistry (1984) 23, 4134-4140]. A second beta subunit, which did not cross-link to the epsilon subunit, was modified preferentially by the fluorescent thiol reagents and by 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. The third beta subunit was less chemically reactive than the others. Both alpha and beta subunits of the soluble 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole-modified enzyme were labeled by the fluorescent thiol reagents. Thus, the modified enzyme, which is inactive, probably has a different conformation from the native soluble ATPase.  相似文献   

12.
We have previously investigated the interaction of macrophages with red blood cells (RBC) displaying phosphatidylserine (PS) in their surface membranes after the transfer of the fluorescent lipid analog 1-acyl-2-[(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl] phosphatidylserine to the RBC (Tanaka, Y., and Schroit, A. J. (1983) J. Biol. Chem. 258, 11335-11343). This derivative, which is rapidly transferred to the RBC at 37 degrees C, results in the efficient binding and phagocytosis of the RBC by autologous macrophages. In the present study, we show that 51Cr-labeled RBC containing [(N-4-nitrobenzo-2-oxa-1,3-diazole)-aminododecanoyl]phosphatidylserine (NBD-PS) are rapidly cleared from the peripheral circulation of syngeneic mice and accumulate in the liver and spleen. Fluorescence microscopy of Kupffer cells and splenic macrophages isolated from the liver and spleens of these animals revealed phagocytosed fluorescent RBC, suggesting the clearance was probably due to endocytosis of the RBC. The accumulation of these RBC in the spleen was dramatic, with approximately 30% of the injected cells localizing in this organ within 60 min. In contrast, the intravenous injection of RBC containing similar amounts of NBD-phosphatidylcholine or NBD-phosphatidylglycerol did not result in clearance which differed significantly from control (untreated) RBC populations. The observed clearance of NBD-PS-containing RBC was much different than the clearance of opsonized RBC which preferentially localized in the liver. These findings show that PS in RBC can serve as a signal for triggering their in vivo recognition and concomitant elimination from the circulation and suggest that the exposure of endogenous PS in the outer leaflet of RBC which occurs in certain pathological conditions could trigger their removal from the circulation.  相似文献   

13.
In contrast to wild-type F1 adenosine triphosphatase, the beta subunits of soluble ATPase from Escherichia coli mutant strains AN120 (uncA401) and AN939 (uncD412) were not labeled by the fluorescent thiol-specific reagents 5-iodoacetamidofluorescein, 2-(4'-iodoacetamidoanilino)naphthalene-6-sulfonic acid or 4-[N-(iodoacetoxy)ethyl-N-methyl]amino-7-nitrobenzo-2-oxa-1,3-diazole. The mutation in the alpha subunit (uncA401) of F1 ATPase thus influences the accessibility of the single cysteinyl residue in the beta subunit. Following reaction of ATPase with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole or N,N'-dicyclohexylcarbodiimide, the alpha and beta subunits of the uncA401, but not of the uncD412 mutant F1 ATPase were intensely labeled by a fluorescent thiol reagent. The mutation in the beta subunit (uncD412) thus influences the accessibility of the cysteinyl residues in the alpha subunit. In other work [Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248] we have shown that 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and 2-(4'-iodoacetamidoanilino)naphthalene-6-sulfonic acid react with a different beta subunit from that labeled by N,N'-dicyclohexylcarbodiimide. This asymmetry with respect to modification by 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and N,N'-dicyclohexylcarbodiimide was seen in both mutant enzymes. In addition, the modification of one beta subunit of the uncA401 F1 ATPase induced the previously unreactive sulfhydryl group of another beta subunit to react with 2-(4'-iodoacetamidoanilino-naphthalene-6-sulfonic acid. These results provide evidence for at least three types of conformational interactions of the major subunits of F1 ATPase: from alpha to beta, from beta to alpha, and from beta to beta. As in wild-type ATPase, labeling of membrane-bound unc mutant ATPase by a fluorescent thiol reagent modified the alpha subunits. This suggests that a conformational change of yet a different type occurs when the enzyme binds to the membrane.  相似文献   

14.
Head injury was induced in rats by a weight drop device, falling over the left hemisphere. The rats were killed at 15 min, 4 h, and 24 h after injury. Cortical slices were taken from the injured zone, from the corresponding region of the contralateral hemisphere, and from the frontal lobe of both hemispheres. These cortical slices were incubated in the presence of a fluorescent phospholipid analogue, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproylphosphatidylch oli ne (C6-NBD-PC) which is a substrate for phospholipase A2 (PLA2) in intact cells. The interaction of this substrate with cells produces only one fluorescent product, the fatty acid C6-NBD-FA, released from the 2-position of C6-NBD-PC. Thus, the level of C6-NBD-FA produced is a direct measure of PLA2 activity. Fifteen minutes after trauma, a 75% increase of PLA2 activity was found in the injured zone. At 4 h, the frontal lobe of the contused, left hemisphere had elevated PLA2 activity, as well as the injured zone (92 and 81%, respectively). At 24 h, PLA2 activity at the site of injury was 245% of sham. In the right, noninjured zone, no significant changes in PLA2 activity were noticed during the entire time course of the experiment. Prostaglandin E2 (PGE2) was extracted from the same cortical slices as those used for PLA2 activity measurement.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have previously shown that a fluorescent derivative of phosphatidic acid, 1-acyl-2-[N-(4-nitrobenzo-2-oxa-1,3-diazole) aminocaproyl]phosphatidic acid (C6-NBD-PA) is rapidly transferred from liposomes to Chinese hamster fibroblasts at 2 degrees C, resulting in intense labeling of the mitochondria, endoplasmic reticulum, and nuclear envelope, but not the plasma membrane. During this labeling, C6-NBD-PA is metabolized predominantly to fluorescent diacylglycerol (Pagano, R. E., Longmuir, K. J., Martin, O. C., and Struck, D. K. (1981) J. Cell Biol. 91, 872-877). In the present study we investigated the mechanism by which C6-NBD-PA enters cells and is translocated to intracellular membranes at low temperature. (i) When hydrolysis of C6-NBD-PA to diacylglycerol was prevented by using a nonhydrolyzable fluorescent phosphonate analog, intense labeling of the plasma membrane occurred but fluorescent lipid did not enter the cytoplasm of cells. (ii) Experiments using C6-NBD-PA and cells prelabeled with 32Pi demonstrated that some of the fluorescent diacylglycerol was rephosphorylated at 2 degrees C. (iii) When cells were treated with 1,3-[palmitoyl, N-(4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl]-glycerophosphate, the lipid was dephosphorylated to 1,3-diacylglycerol but its rephosphorylation could not be detected. Nevertheless, rapid labeling of cytoplasmic membranes occurred. (iv) Formation of fluorescent diacylglycerol at the plasma membrane by treatment of cells with fluorescent phosphatidylcholine followed by phospholipase C at 2 degrees C resulted in strong labeling of intracellular membranes. Based on these results, a working model is presented for the uptake and intracellular translocation of phosphatidic acid involving formation of diacylglycerol at the plasma membrane followed by its transbilayer movement, facilitated translocation to intracellular membranes, and rephosphorylation.  相似文献   

16.
The interaction of macrophages with red blood cells (RBC) displaying phosphatidylserine (PS) in their surface membranes was investigated after the transfer of an exogenously supplied fluorescent lipid analog to the RBC. Nonfluorescent (quenched) lipid vesicles were formed by ultrasonication from 1-acyl-2-[(N-4-nitro-benzo-2-oxa-1,3 diazole)aminocaproyl]phosphatidyl-serine (NBD-PS) or 1-acyl-2[(N-4-nitrobenzo-2-oxa-1,3 diazole)aminocaproyl]phosphatidylcholine (NBD-PC). The interaction of these vesicles with RBC was monitored as a function of vesicle concentration by assessment of the degree to which cell-associated lipid fluorescence was dequenched after vesicle treatment. When vesicle concentrations of less than 100 ng/ml were used, lipid fluorescence was largely dequenched, indicating that lipid transfer was the predominant mechanism of both NBD-PS and NBD-PC uptake; however, when vesicle concentrations were increased to greater than 100 ng/ml, a concentration-dependent increase in the fraction of quenched cell-associated lipid was observed, indicating that another mechanism, possibly vesicle-cell adhesion, also occurred. Using NBD-PS at concentrations at which dilution of all the phospholipid analog in the recipient cell membrane could be unequivocally confirmed, we observed that the uptake of NBD-PS-treated RBC by macrophages was increased 5-fold over that of controls, whereas the uptake of RBC containing an equivalent amount of exogenously supplied NBD-PC was unaltered. Furthermore, preincubation of macrophage monolayers with vesicles containing PS resulted in a approximately 60% inhibition in the uptake of NBD-PS-treated RBC, whereas no inhibition in the uptake of control, opsonized, or NBD-PC-treated RBC was observed. These findings suggest that PS in the outer leaflet of RBC might serve as a signal for triggering their recognition by macrophages.  相似文献   

17.
To explore the biophysical properties of the binding site for cocaine and related compounds in the serotonin transporter SERT, a high affinity cocaine analogue (3beta-(4-methylphenyl)tropane-2beta-carboxylic acid N-(N-methyl-N-(4-nitrobenzo-2-oxa-1,3-diazol-7-yl)ethanolamine ester hydrochloride (RTI-233); K(I) = 14 nm) that contained the environmentally sensitive fluorescent moiety 7-nitrobenzo-2-oxa-1,3-diazole (NBD) was synthesized. Specific binding of RTI-233 to the rat serotonin transporter, purified from Sf-9 insect cells, was demonstrated by the competitive inhibition of fluorescence using excess serotonin, citalopram, or RTI-55 (2beta-carbomethoxy-3beta-(4-iodophenyl)tropane). Moreover, specific binding was evidenced by measurement of steady-state fluorescence anisotropy, showing constrained mobility of bound RTI-233 relative to RTI-233 free in solution. The fluorescence of bound RTI-233 displayed an emission maximum (lambda(max)) of 532 nm, corresponding to a 4-nm blue shift as compared with the lambda(max) of RTI-233 in aqueous solution and corresponding to the lambda(max) of RTI-233 in 80% dioxane. Collisional quenching experiments revealed that the aqueous quencher potassium iodide was able to quench the fluorescence of RTI-233 in the binding pocket (K(SV =) 1.7 m(-)(1)), although not to the same extent as free RTI-233 (K(SV =) 7.2 m(-)(1)). Conversely, the hydrophobic quencher 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) quenched the fluorescence of bound RTI-233 more efficiently than free RTI-233. These data are consistent with a highly hydrophobic microenvironment in the binding pocket for cocaine-like uptake inhibitors. However, in contrast to what has been observed for small-molecule binding sites in, for example, G protein-coupled receptors, the bound cocaine analogue was still accessible for aqueous quenching and, thus, partially exposed to solvent.  相似文献   

18.
A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a system that uses N-4-nitrobenzo-2-oxa-1,3-diazole (NBD) or fluorescein as the energy donor and sulforhodamine as the energy acceptor. The necessary parameters for RET in this system were first optimized using liposomes. Both quenching of the energy donor and sensitized fluorescence of the energy acceptor could be directly observed in the microscope. RET microscopy was then used in cultured fibroblasts to identify those intracellular organelles labeled by the lipid probe, N-SRh-decylamine (N-SRh-C10). This was done by observing the sites of RET in cells doubly labeled with N-SRh-C10 and an NBD-labeled lipid previously shown to label the endoplasmic reticulum, mitochondria, and nuclear envelope. RET microscopy was also used in cells treated with fluorescein-labeled Lens culinaris agglutinin and a sulforhodamine derivative of phosphatidylcholine to examine the internalization of plasma membrane lipid and protein probes. After internalization, the fluorescent lectin resided in most, but not all of the intracellular compartments labeled by the fluorescent lipid, suggesting sorting of the membrane-bound lectin into a subset of internal compartments. We conclude that RET microscopy can co-localize different membrane-bound components at high resolution, and may be particularly useful in examining temporal and spatial changes in the distribution of fluorescent molecules in membranes of the living cell.  相似文献   

19.
4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) is widely applied as a fluorescent tagging reagent in biochemistry, as a derivatization agent in analytical chemistry, and as a component for design of fluorescent nanoparticles. Four new 7-nitrobenzo-2-oxa-1,3-diazole (NBD)-tagged polyamines containing two to four amine moieties were synthesized and used as an effective tool for staining of siliceous frustules of the diatom algae and spicules of the siliceous sponges, including fossilized samples. An unexpected reaction between NBD-Cl and tertiary amine groups was found, giving rise to NBD-tagged amines with elimination of an alkyl group. The reaction proceeds through the Meisenheimer complex and quaternary salt, which transform to the product by Hofmann reaction (alkene elimination) or nucleophilic substitution (halogenated compound formation). In the case of polyamines, NBD-Cl causes chain scissoring, giving a set of NBD-tagged amines. The found NBD-Cl reaction with tertiary amines must be taken into account when using NBD-Cl and similar activated aromatic systems for amine derivatization in analytical and biochemistry applications. The reaction with polyamines opens the way to libraries of NBD-tagged compounds.  相似文献   

20.
Stasiuk M  Kozubek A 《FEBS letters》2008,582(25-26):3607-3613
The effects induced by natural phenolic and resorcinolic lipids on membrane permeability were investigated. All of the compounds tested perturbed the phospholipid bilayer and stabilized erythrocytes against hypoosmotically induced hemolysis. Dipalmitoylphosphatidylcholine liposomes with two preincorporated fluorescent dyes (1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatrien p-toluenesulfonate (TMA-DPH) and N-(-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoetanolamine triethylammonium salt (NBD-PE)) were used to determine the effects of tested compounds on the core and surface of the bilayer. Resorcinolic lipids from rye and cardol increased the polarization of TMA-DPH fluorescence more than that of NBD-PE, but anacardic acid, methylocardol, and alkylphenol increased NBD-PE dye fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号