共查询到20条相似文献,搜索用时 15 毫秒
1.
S K Kong Y M Choy K P Fung C Y Lee 《Biochemical and biophysical research communications》1989,165(1):131-137
The role of cAMP in activating the Na+/H+ antiporter in murine macrophage (M phi) system was investigated. Incubation of PU5-1.8 macrophage tumour cells, peritoneal M phi and bone marrow derived macrophages (BMDM phi s) with dibutyryl-cAMP (db-cAMP) or cholera toxin (CT) led to an increase in intracellular pH (pHi). The magnitudes of these responses differed markedly in the three cell types, BMDM phi s being the most sensitive, PU5-1.8 cells the least so. These cells also differed in their responses to inhibitors of Na+/H+ exchange. In PU5-1.8 cells, the db-cAMP- or CT-triggered intracellular alkalinization was abolished by amiloride treatment which, however, was ineffective in BMDM phi s. The chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP), also caused a significant increase in cytoplasmic pH. However, its action was apparently not mediated by cAMP. The significance of these observations is discussed. 相似文献
2.
The cardiotoxic action of palytoxin was investigated using embryonic chick ventricular cells. Under normal ionic conditions, palytoxin produced an intracellular acidification which is partially compensated for by the Na+/H+ antiporter thereby leading to an increased rate of ethylisopropylamiloride-sensitive 22Na+ uptake. Under depolarizing membrane conditions, palytoxin produced a cellular acidification, a cellular alkalinization or no change in intracellular pH depending on the value of the extracellular pH. We propose that palytoxin acidifies cardiac cells by opening preexisting H+ conducting pathways in the plasma membrane. 相似文献
3.
The ability to discriminate between highly similar substrates is one of the remarkable properties of enzymes. For example, transporters and channels that selectively distinguish between various solutes enable living organisms to maintain and control their internal environment in the face of a constantly changing surrounding. Herein, we examine in detail the selectivity properties of one of the most important salt transporters: the bacterial Na+/H+ antiporter. Selectivity can be achieved at either the substrate binding step or in subsequent antiporting. Surprisingly, using both computational and experimental analyses synergistically, we show that binding per se is not a sufficient determinant of selectively. All alkali ions from Li+ to Cs+ were able to competitively bind the antiporter's binding site, whether the protein was capable of pumping them or not. Hence, we propose that NhaA's binding site is relatively promiscuous and that the selectivity is determined at a later stage of the transport cycle. 相似文献
4.
《Molecular membrane biology》2013,30(1):90-100
AbstractNa+/H+ antiporters play a primary role in Na+/H+ homeostasis in cells and many organelles and have long been drug targets. The X-ray structure of NhaA, the main antiporter of Escherichia coli, provided structural insights into the antiport mechanism and its pH regulation and revealed a novel fold; six of the 12 TMs (Trans membrane segments) are organized in two topologically inverted repeats, each with one TM interrupted by an extended chain creating a unique electrostatic environment in the middle of the membrane at the cation binding site. Remarkably, inverted repeats containing interrupted helices with similar functional implications have since been observed in structures of other bacterial secondary transporters with almost no sequence homology. Finally, the structure reveals that NhaA is organized into two functional regions: a ‘pH sensor' – a cluster of amino acyl side chains that are involved in pH regulation; and a catalytic region that is 9 Å removed from the pH sensor. Alternative accessibility of the binding site to either side of the membrane, i.e., functional-dynamics, is the essence of secondary transport mechanism. Because NhaA is tightly pH regulated, structures of the pH-activated and ligand-activated NhaA conformations are needed to identify its functional-dynamics. However, as these are static snapshots of a dynamic protein, the dynamics of the protein both in vitro and in situ in the membrane are also required as reviewed here in detail. The results reveal two different conformational changes characterizing NhaA: One is pH-induced for NhaA activation; the other is ligand-induced for antiport activity. 相似文献
5.
Summary Studies were performed on purified brush-border membranes from the kidney of the rabbit to examine the relation between protein kinase C and the Na+/H+ exchanger in these membranes. The brush-border membranes were transiently opened by exposure to hypotonic media and the membrane proteins phosphorylated by exposure to ATP and phorbol esters or partially purified protein kinase C. The membranes were resealed and the intravesicular space acidified by incubation in a sodium-free isotonic solution (pH 5.5). The rate of uptake of 1mm
22Na+ (pH 7.5), with and without amiloride (1mm), was assayed and the proton gradient-stimulated, amiloride-inhibitable component of22Na+ taken as a measure of the activity of the Na+/H+ exchanger. 12-0-tetradecanoyl phorbol-13-acetate (TPA) increased the amiloride-sensitive component of22Na+ uptake TPA did not affect the amiloride-insensitive component of22Na+ uptake or the equilibrium concentration of sodium. TPA also did not affect the rate of dissipation of the proton gradient in the absence of sodium or the rate of sodium-dependent or-independent uptake ofd-glucose. Other active phorbol esters stimulated the rate of Na+/H+ exchange, but phorbol esters of the 4 configuration did not. Incubation of the opened membranes in partially purified protein kinase C increased the rate of proton gradient-stimulated, amiloride-inhibitable sodium uptake. The stimulatory effect of TPA and protein kinase C was not additive. In the absence of ATP, neither TPA nor protein kinase C affected Na+/H+ exchange transport. To determine the membrane-bound protein substrates, parallel experiments were conducted with -[32P] ATP in the phosphorylating solutions. The reaction was stopped by SDS and the phosphoproteins resolved by PAGE and autoradiography. TPA stimulation of protein kinase C resulted in phosphorylation of approximately 13 membrane-bound proteins ranging in apparent molecule from 15,000 to 140,000 daltons. These studies indicate that activation of endogenous renal brush-border protein kinase C by phorbol esters or exposure of these membranes to exogenous protein kinase C increases the rate of proton gradient-stimulated, amiloride-inhibitable sodium transport. Protein kinase C activation also results in phosphorylation of a finite number of membrane-bound proteins. 相似文献
6.
S Grinstein J D Smith C Rowatt S J Dixon 《The Journal of biological chemistry》1987,262(31):15277-15284
Treatment of thymic lymphocytes with the mitogenic lectin concanavalin A (ConA) increases the intracellular free Ca2+ concentration and stimulates phosphoinositide turnover. ConA also induced a rapid, amiloride-sensitive, Na+-dependent increase in cytosolic pH of 0.13 +/- 0.01, indicative of stimulation of the Na+/H+ antiport. To investigate the mechanism underlying activation of Na+/H+ exchange by ConA, the intracellular free Ca2+ concentration changes induced by this lectin were precluded by loading the cells with Ca2+-buffering agents and suspension in Ca2+-free media. Under these conditions, the ConA-induced cytoplasmic alkalinization proceeded normally. Two approaches were used to assess the role of protein kinase C. First, this enzyme was inhibited by the addition of 1-(5-isoquinolinysulfonyl)-2-methylpiperazine. In the presence of this potent antagonist, stimulation of the antiport by 12-O-tetradecanoylphorbol-13-acetate was greatly inhibited. In contrast, stimulation by ConA was unaffected. Second, protein kinase C was depleted by overnight incubation with phorbol esters. Following this treatment, Na+/H+ exchange was no longer activated by 12-O-tetradecanoyl-13-acetate, but was still stimulated by ConA. These data suggest that a Ca2+- and protein kinase C-independent mechanisms mediates the activation of Na+/H+ exchange by ConA. The possible role of GTP-binding proteins in the activation was also studied. The antiport was not stimulated by either fluoroaluminate or vanadate. Moreover, pretreatment with pertussis toxin failed to inhibit the ConA-induced cytoplasmic alkalinization. In contrast, preincubation with cholera toxin partially inhibited activation. Under these conditions, cholera toxin significantly elevated intracellular cAMP levels. Inhibition was also observed in cells treated with forskolin at concentrations that increased [cAMP]. The data suggest that a novel cAMP-sensitive signaling mechanism not involving Ca2+ and protein kinase C is involved in the stimulation of Na+/H+ exchange by mitogens in T lymphocytes. 相似文献
7.
S M Periyasamy S S Kakar K D Garlid A Askari 《The Journal of biological chemistry》1990,265(11):6035-6041
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma. 相似文献
8.
S M Periyasamy 《Canadian journal of physiology and pharmacology》1992,70(7):1048-1056
In our routine screening of chemicals that would inhibit cardiac sarcolemmal Na+/H+ antiporter, we discovered that some of the opioids produced inhibition of cardiac sarcolemmal Na+/H+ antiporter in micromolar concentrations. Using U-50,488H, a selective kappa-opioid agonist, we characterized the nature of interaction between opioids and the Na+/H+ antiporter. The inhibitory effect of U-50,488H on Na+/H+ antiporter was immediate and reversible, and was not mediated through the interaction with the opioid receptors but due to the direct interaction of U-50,488H with the Na+/H+ antiporter. The kinetic data show that in the presence of U-50,488H the Km for Na+ was increased from 2.5 +/- 0.2 to 5.0 +/- 0.3 mM, while the Vmax (52.0 +/- 5.0 nmol.mg-1.min-1) remained the same. These results suggest that U-50,488H and Na+ compete for the same site on the antiporter. When testing the effect of U-50,488H on other transport systems of cardiac sarcolemma, we found that U-50,488H also inhibited Na+/Ca2+ antiporter and Na+/K+ pump but at much higher concentrations suggesting that U-50,488H shows some degree of selectivity for cardiac sarcolemmal Na+/H+ antiporter. When we compared the inhibitory potency of U-50,488H with amiloride and its analog, namely 5-(N,N-hexamethylene)amiloride, we found that U-50,488H (IC50 = 100 +/- 15 microM) was threefold more potent than amiloride (IC50 = 300 +/- 20 microM) but it was three-fold less potent than the amiloride analog (IC50 = 30 +/- 10 microM) in inhibiting cardiac sarcolemmal Na+/H+ antiporter. These results show that although U-50,488H is more potent than amiloride, the inhibitory characteristics of U-50,488H on cardiac sarcolemmal Na+/H+ antiporter are similar to amiloride. 相似文献
9.
Garnovskaya MN Mukhin YV Vlasova TM Raymond JR 《The Journal of biological chemistry》2003,278(19):16908-16915
The type 1 sodium-hydrogen exchanger (NHE-1) is a ubiquitous electroneutral membrane transporter that is activated by hypertonicity in many cells. NHE-1 may be an important pathway for Na(+) entry during volume restoration, yet the molecular mechanisms underlying the osmotic regulation of NHE-1 are poorly understood. In the present study we conducted a screen for important signaling molecules that could be involved in hypertonicity-induced activation of NHE-1 in CHO-K1 cells. Hypertonicity rapidly activated NHE-1 in a concentration-dependent manner as assessed by proton microphysiometry and by measurements of intracellular pH on a FLIPR (fluorometric imaging plate reader). Inhibitors of Ca(2+)/calmodulin (CaM) and Janus kinase 2 (Jak2) attenuated this activation, whereas neither calcium chelation nor inhibitors of protein kinase C, the Ras-ERK1/2 pathway, Src kinase, and Ca(2+)/calmodulin-dependent enzymes had significant effects. Hypertonicity also resulted in the rapid tyrosine phosphorylation of Jak2 and STAT3 (the major substrate of Jak2) and CaM. Phosphorylation of Jak2 and CaM were blocked by AG490, an inhibitor of Jak2. Immunoprecipitation studies showed that hypertonicity stimulates the assembly of a signaling complex that includes CaM, Jak2, and NHE-1. Formation of the complex could be blocked by AG490. Thus, we propose that hypertonicity induces activation of NHE-1 in CHO-K1 cells in large part through the following pathway: hypertonicity --> Jak2 phosphorylation and activation --> tyrosine phosphorylation of CaM --> association of CaM with NHE-1 --> NHE-1 activation. 相似文献
10.
Both protein kinase C and calcium mediate activation of the Na+/H+ antiporter in Chinese hamster embryo fibroblasts 总被引:3,自引:0,他引:3
Chinese hamster embryo fibroblast cells (CHEF/18) possess a plasma membrane-associated, amiloride-sensitive Na+/H+ antiporter that affects intracellular pH (pHi) and is activated by growth factor addition. Our results using 14C-benzoic acid distribution indicate that both epidermal growth factor (EGF) and thrombin are capable of causing rapid rises in the pHi of CHEF/18 cells. The maximal shift induced by these factors is 0.20 to 0.25 pH units above the basal unstimulated level. Distinctive differences were observed between the modes of action of these two growth factors. Sequential additions revealed that the rise in pHi due to EGF was additive with that caused by diacylglycerols (DAG), while that of thrombin was not. Furthermore, exposure of cells to the phorbol ester PMA for a prolonged period of time in order to down-regulate protein kinase C (pkC), or treatment with the pkC inhibitor H-7, abolished the pHi response to thrombin but not to EGF. In contrast, incubation of cells in nominally calcium-free medium or with the calmodulin antagonists W-7 or trifluoperazine (TFP) decreased only the ability of EGF to cause changes in pHi. These data suggest that there are two distinct mechanisms for activation of the Na+/H+ antiporter in CHEF/18 fibroblast cells and thus provide an example of the use of alternative modes for the modulation of intracellular processes. 相似文献
11.
The Na+ cycle of extreme alkalophiles: A secondary Na+/H+ antiporter and Na+/solute symporters 总被引:3,自引:0,他引:3
Extremely alkalophilic bacteria that grow optimally at pH 10.5 and above are generally aerobic bacilli that grow at mesophilic temperatures and moderate salt levels. The adaptations to alkalophily in these organisms may be distinguished from responses to combined challenges of high pH together with other stresses such as salinity or anaerobiosis. These alkalophiles all possess a simple and physiologically crucial Na+ cycle that accomplishes the key task of pH homeostasis. An electrogenic, secondary Na+/H+ antiporter is energized by the electrochemical proton gradient formed by the proton-pumping respiratory chain. The antiporter facilitates maintenance of a pHin that is two or more pH units lower than pHout at optimal pH values for growth. It also largely converts the initial electrochemical proton gradient formed by respiration into an electrochemical sodium gradient that energizes motility as well as a plethora of Na+/solute symporters. These symporters catalyze solute accumulation and, importantly, reentry of Na+. The extreme nonmarine alkalophiles exhibit no primary sodium pumping dependent upon either respiration or ATP. ATP synthesis is not part of their Na+ cycle. Rather, the specific details of oxidative phosphorylation in these organisms are an interesting analogue of the same process in mitochondria, and may utilize some common features to optimize energy transduction. 相似文献
12.
Melo AM Felix NA Carita JN Saraiva LM Teixeira M 《Biochemical and biophysical research communications》2006,348(3):1011-1017
In the thermohalophilic bacterium Rhodothermus marinus, the NADH:quinone oxidoreductase (complex I) is encoded by two single genes and two operons, one of which contains the genes for five complex I subunits, nqo10-nqo14, a pterin carbinolamine dehydratase, and a putative single subunit Na+/H+ antiporter. Here we report that the latter encodes indeed a functional Na+/H+ antiporter, which is able to confer resistance to Na+, but not to Li+ to an Escherichia coli strain defective in Na+/H+ antiporters. In addition, an extensive amino acid sequence comparison with several single subunit Na+/H+ antiporters from different groups, namely NhaA, NhaB, NhaC, and NhaD, suggests that this might be the first member of a new type of Na+/H+ antiporters, which we propose to call NhaE. 相似文献
13.
P Vigne J P Breittmayer C Frelin M Lazdunski 《The Journal of biological chemistry》1988,263(34):18023-18029
Two mechanisms are involved in the regulation of the intracellular pH (pHi) of aortic smooth muscle cells: the Na+/H+ antiporter and a Na+-independent HCO3-/Cl- antiporter. The Na+/H+ antiporter acts as a cell alkalinizing mechanism. It is activated by vasopressin and by phorbol esters when cells are incubated in the presence of bicarbonate but is not affected in the absence of bicarbonate. The HCO3-/Cl- antiporter acts as a cell acidifying mechanism. Agents such as forskolin, 8-Br-cAMP, and isoproterenol which raise intracellular cAMP levels inhibit the HCO3-/Cl- antiporter by shifting its pHi dependence in the alkaline direction. Thus, within the same cell type, different hormones control pHi variations by acting on different pHi regulating systems. An increase in pHi can be achieved either by a stimulation of a cell alkalinizing mechanism or by inhibition of a cell acidifying mechanism. A change of the activity of one pHi regulating mechanism modifies the responsiveness of the other to regulatory agents. Bicarbonate turns on the HCO3-/Cl- antiporter, decreases pHi and allows its regulation by protein kinase C through the Na+/H+ antiporter. Inhibition of the HCO3-/Cl- antiporter by cAMP increases the pHi and switches off the protein kinase C-mediated regulation. 相似文献
14.
The functional expression of membrane transport proteins that are responsible for exchanging sodium and protons is a ubiquitous phenomenon. Among vertebrates the Na+/H+ antiporter occurs in plasma membranes of polarized epithelial cells and non-polarized cells such as red blood cells, muscle cells, and neurons, and in each cell type the transporter exchanges one sodium for one hydrogen ion, is inhibited by amiloride, and regulates intracellular pH and sodium concentration within tight limitations. In polarized epithelial cells this transporter occurs in two isoforms, each of which is restricted to either the brush border or basolateral cell membrane, and perform somewhat different tasks in the two locations. In prokaryotic cells, sodium/proton exchange occurs by an electrogenic 1Na+/2H+ antiporter that is coupled to a primary active proton pump and together these two proteins are capable of tightly regulating the intracellular concentrations of these cations in cells that may occur in environments of 4 M NaCl or pH 10-12. Invertebrate epithelial cells from the gills, gut, and kidney also exhibit electrogenic sodium/proton exchange, but in this instance the transport stoichiometry is 2Na+/1H+. As with vertebrate electroneutral Na+/H+ exchange, the invertebrate transporter is inhibited by amiloride, but because of the occurrence of two external monovalent cation binding sites, divalent cations are able to replace external sodium and also be transported by this system. As a result, both calcium and divalent heavy metals, such as zinc and cadmium, are transported across epithelial brush border membranes in these animals and subsequently undergo a variety of biological activities once accumulated within these cells. Absorbed epithelial calcium in the crustacean hepatopancreas may participate in organismic calcium balance during the molt cycle and accumulated heavy metals may undergo complexation reactions with intracellular anions as a detoxification mechanism. Therefore, while the basic process of sodium/proton exchange may occur in invertebrate cells, the presence of the electrogenic 2Na+/1H+ antiporter in these cells allows them to perform a wide array of functions without the need to develop and express additional specialized transport proteins. J. Exp. Zool. 289:232-244, 2001. 相似文献
15.
16.
Reconstitution of the mitochondrial non-selective Na+/H+ (K+/H+) antiporter into proteoliposomes 总被引:1,自引:0,他引:1
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact. 相似文献
17.
The rapid Ca2+ increase shown by quin2-loaded platelets was found to be an artifact, probably due to light scattering elicited by collagen. Further findings as to fura2-loaded platelets offered additional support, demonstrating that the initial activation of phospholipase A2 (PLA2) does not require cytoplasmic Ca2+ mobilization. A possible role of the Na+/H+ antiporter as a trigger for collagen-induced activation of PLA2 in rat platelets was presented for the first time. 相似文献
18.
Kimihiko Goto Hajime Hirata Yasuo Kagawa 《Journal of bioenergetics and biomembranes》1980,12(3-4):297-308
As a first step in the isolation of a stable Na+/H+ antiporter, its reaction in sonicated membrane vesicles of thermophilic bacterium PS3 has been characterized. The sonicated vesicles showed quenching of quinacrine fluorescence in either NADH oxidation or ATP hydrolysis. The quenching was reversed by the addition of Na+, Li+, Mn2+, Cd2+, and Co2+, but not of choline+ or Ca2+, regardless of their counter anions.22Na+ was taken up into the vesicles by NADH oxidation, and the22Na+ uptake was inhibited by the addition of an uncoupler. H+ release was observed on addition of Na+ to sonicated vesicles. The magnitude of the pH difference across the membrane induced by NADH oxidation was constant at pH 7.0 to 9.1, but the Na+/H+ antiport was affected by the pH of the medium (optimum pH=8.5). TheK
m
's of the antiporter for Na+ and Li+ were 2.5 and 0.1 mM, respectively, but theV
max values for the two ions were the same at pH 8.0. In the presence of Li+, no further decrease of fluorescence quenching was observed on addition of Na+ andvice versa. The Na+/H+ antiporter activity in PS3 was stable at 70°C, and the optimum temperature for activity was 55–60°C. In contrast to mesophilic cation/H+ antiporters, this antiporter was not inhibited by a thiol reagent.Abbreviations Tricine
N-tris(hydroxymethyl)methylglycine
- MOPS
morpholinopropane sulfonic acid
- TMAHO
tetramethylammonium hydroxide
- DCCD
N,N-dicyclohexylcarbodiimide
- FCCP
carbonyl cyanidep-trifluoromethoxyphenylhydrazone
- H+ — ATPase
proton-translocating adenosine triphosphatase
-
electrochemical proton gradient across membrane
-
electrochemical Na+ gradient across membrane
- pH
pH difference across membrane 相似文献
19.
Fabiola Baltierra Mabel Castillo María Cecilia Gamboa Matías Rothhammer Erwin Krauskopf 《Biochemical and biophysical research communications》2013,430(2):535-540
Environmental stress factors such as salt, drought and heat are known to affect plant productivity. However, high salinity is spreading throughout the world, currently affecting more than 45 million ha. One of the mechanisms that allow plants to withstand salt stress consists on vacuolar sequestration of Na+, through a Na+/H+ antiporter. We isolated a new vacuolar Na+/H+ antiporter from Eucalyptus globulus from a cDNA library. The cDNA had a 1626 bp open reading frame encoding a predicted protein of 542 amino acids with a deduced molecular weight of 59.1 KDa. Phylogenetic and bioinformatic analyses indicated that EgNHX1 localized in the vacuole. To assess its role in Na+ exchange, we performed complementation studies using the Na+ sensitive yeast mutant strain Δnhx1. The results showed that EgNHX1 partially restored the salt sensitive phenotype of the yeast Δnhx1 strain. However, its overexpression in transgenic Arabidopsis confers tolerance in the presence of increasing NaCl concentrations while the wild type plants exhibited growth retardation. Expression profiles of Eucalyptus seedlings subjected to salt, drought, heat and ABA treatment were established. The results revealed that Egnhx1 was induced significantly only by drought. Together, these results suggest that the product of Egnhx1 from E. globulus is a functional vacuolar Na+/H+ antiporter. 相似文献
20.
拟南芥液泡膜Na+/H+逆向转运蛋白的研究进展 总被引:2,自引:0,他引:2
拟南芥液泡膜Na /H 逆向转运蛋白是由AtNHX1基因编码的一个在盐胁迫中起重要作用的蛋白。本文综述了AtNHX1的基本结构、功能及作用机制,展望其作为有效植物耐盐基因的前景,并对拟南芥液泡膜Na /H 逆向转运蛋白基因家族其他成员的研究,也做了相应的概括。 相似文献