首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were undertaken to investigate testicular steroidogenesis in the Rhesus monkey Macaca mulatta. Testicular fragments (50 mg) were incubated for 3 hr with pregnenolone-7-3H or with progesterone-7-3H. The major metabolite of pregnenolone was progesterone (70.1%), with a lesser conversion to 17-hydroxyprogesterone (1.6%), androstenedione (3.3%), and testosterone (7.2%). The delta-5 intermediates 17-hydroxypregnenolone (4.6%) and dehydroepiandrosterone (8.6%) were also identified in the pregnenolone incubates. A majority of the progesterone substrate was not metabolized by the testicular fragments (80.1%), while some conversion to 17-hydroxyprogesterone (3.4%), androstenedione (4.8%), and testosterone (11.7%) occurred in the incubates. These results suggest that testicular fragments from the Rhesus monkey may convert pregnenolone to testosterone through both the delta-4 and the delta-5 pathways.  相似文献   

2.
Slices of an adreno-cortical adenoma which had been obtained at operation from an 11-year-old girl with clinical signs of virilism were incubated with each of the following steroids: [1,2-3H]progesterone, [4-14C]pregnenolone, [1,2-3H]testosterone, [4-14C]androstenedione and [7-3H]dehydroepiandrosterone, respectively. Isolation and identification of the free radioactive metabolites were achieved by gel column chromatography on Sephadex LH-20, thin-layer chromatography, radio gas chromatography and isotope dilution. After incubation of progesterone, the following metabolites were identified: 11beta-hydroxyprogesterone, 16alpha-hydroxyprogesterone, 17alpha-hydroxyprogesterone, 21-deoxycortisol, corticosterone and cortisol. Pregnenolone was metabolized to 17alpha-hydroxypregnenolone, progesterone, dehydroepiandrosterone, androstenedione and 11beta-hydroxyandrostenedione. When testosterone was used as substrate, 11beta-hydroxytestosterone, androstenedione and 11beta-hydroxyandrostenedione were found as metabolites, whereas androstenedione was metabolized to testosterone and 11beta-hydroxyandrostenedione. After incubation of dehydroepiandrosterone, only androstenedione and 11beta-hydroxyandrostenedione were isolated and identified. From these results, it appears that cortisol was formed in the adenoma tissue via 21-deoxycortisol and corticosterone. Delta4-3oxo steroids of the C19-series arose exclusively from pregnenolone via 17alpha-hydroxypregnenolone and dehydroepiandrosterone, and not from progesterone and 17alpha-hydroxyprogesterone. Calculated on the amounts of metabolites formed, the highest enzyme activities were those of the 11beta-hydroxylase and the 17alpha-hydroxylase. It is interesting to note that only traces of testosterone were detected after incubation of androstenedione, whereas testosterone yielded large amounts of androstenedione.  相似文献   

3.
The effects of ethanol and acetaldehyde on testicular steroidogenesis were examined in enzymatically dispersed cells of the rodent testes. Both drugs significantly inhibited gonadotropin-stimulated steroidogenesis, but acetaldehyde was considerably more potent (>1000 times) than ethanol. To determine the step in testosterone's biosynthetic pathway which was inhibited by the two drugs, cells were incubated in the presence of [3H]pregnenolone and [3H]progesterone, and the amount of label incorporated into testosterone and its precursors was determined. Ethanol and acetaldehyde inhibited only the conversion of androstenedione to testosterone; none of the other precursors of testosterone was affected.  相似文献   

4.
The mechanisms by which ethanol (EtOH) inhibits testicular testosterone biosynthesis were studied with isolated rat Leydig cells in vitro comparing the effects of EtOH in six different culture media. The actual sites of inhibition by EtOH, identified by measuring the steroidogenic precursors, varied depending on the medium used. In Krebs-Ringer bicarbonate buffer, EtOH inhibited both the conversion of pregnenolone to progesterone and androstenedione to testosterone. In the pyruvate (Pyr) supplemented Dulbecco's Modified Eagle medium, the decreased progesterone concentrations in the presence of EtOH were reflected to all successive steroids 17-OH-progesterone, androstenedione and testosterone. The presence of L-glutamate (Glu) in the medium elevated testosterone production, but EtOH still inhibited the conversion of pregnenolone to progesterone, and also the androstenedione/testosterone ratio was elevated because of the decreased testosterone concentrations. In the presence of both Glu and Pyr in the medium the EtOH-induced decreases in the steroid concentrations were fully recovered in isolated Leydig cells. These results demonstrate that both Pyr and Glu supplementations are essential for the maintenance of maximal rate of testosterone synthesis in vitro in the presence of EtOH.  相似文献   

5.
We recently reported that the baboon testis converts pregnenolone to testosterone through the delta-4 pathway. The present studies were to determine the metabolism of intermediates of the delta-4 and delta-5 pathway by the baboon testis. Fragments (50 mg) were incubated for 3 hr with 10 muCi of the following tritium-labelled substrates: pregnenolone, progesterone, 17-hydroxypregnenolone, 17-hydroxyprogesterone, dehydroepiandrosterone, androstenedione, or testosterone. Pregnenolone was converted to testosterone primarily through the delta-4 pathway, with accumulation of progesterone, 17-hydroxyprogesterone and 20alpha-dihydroprogesterone as predominant intermediates. Similar results were obtained in progesterone incubations. 17-hydroxyprogesterone was not efficiently metabolized by the fragments, while 17-hydroxypregnenolone and dehydroepiandrosterone were efficiently converted into testosterone and androstenedione. Androstenedione was metabolized primarily to testosterone, while testosterone was not a suitable substrate. Some 5alpha-androstanediol was identified in each incubate. These results suggest that although testosterone is formed from pregnenolone through the delta-4 pathway, the delta-5 intermediates are more suitable substrates for testosterone synthesis in the baboon testis.  相似文献   

6.
Bovine theca and granulosa cells interact to promote androgen production   总被引:1,自引:0,他引:1  
Pieces of theca interna or follicle wall (theca interna + attached granulosa cells), obtained from bovine preovulatory follicles prior to the surge of luteinizing hormone (LH) and cultured for 3 days, secreted androstenedione. Luteinizing hormone, but not follicle-stimulating hormone (FSH), increased production of androstenedione 3 to 4-fold. In both the presence and absence of LH, follicle wall preparations secreted about 4-fold more androstenedione than did equivalent amounts of theca interna tissue. Isolated granulosa cells produced only negligible quantities of androstenedione, which suggests that they may contribute to the greater production of androstenedione by follicle wall by supplying progestin precursor to the theca cells. The addition of pregnenolone or progesterone to isolated theca interna increased the secretion of androstenedione, but pregnenolone was by far the more effective precursor. This suggested that the delta 5 (delta 5) pathway is the preferred pathway for androstenedione synthesis by bovine theca cells and that granulosa cells might supply progestin precursor in the form of pregnenolone. Follicle wall and granulosa cell cultures secreted 2 and 7 times more pregnenolone, respectively, than did theca cultures. Luteinizing hormone, but not FSH, increased production of pregnenolone by the follicle wall, whereas the gonadotropins had no effect on secretion by either granulosa or theca cells. Since exogenous testosterone enhanced the production of pregnenolone by granulosa cells, thecal androgen (which is stimulated by LH) may increase the ability of granulosa cells to make pregnenolone and explain the stimulatory effect of LH on pregnenolone secretion by follicle wall.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Sliced testis tissue from Bufo arenarum was incubated in the presence of [3H]pregnenolone. Testis fragments were also used for double isotope experiments using [3H]pregnenolone and [14C]progesterone. Specific activities were equated with the addition of radioinert pregnenolone. When yields of radiometabolites were analysed, pregnenolone was found to be a good precursor for C19 steroids such as dehydroepiandrosterone, 5-androsten-3β,17β diol, testosterone, 5α-dihydrotestosterone and a C21 steroid, 5α-pregnan-3,20 dione. Progesterone mainly converts to 5α-pregnan-3,20 dione, a steroid with unknown function in amphibians. The 5-ene pathway, including 5-androsten-3β,17β diol as intermediate, could be predominant for androgen biosynthesis. Testes bypass not only progesterone but also androstenedione for testosterone biosynthesis. Accepted: 17 April 1998  相似文献   

8.
Antisteroidogenic actions of hydrogen peroxide on rat Leydig cells   总被引:7,自引:0,他引:7  
It has been well known that reactive oxygen species (ROS) are produced in the steroidogenic pathway and spermatozoa. H2O2, one of ROS produced by spermatozoa, appears to be a primary toxic agent. In the present study, we examined the effects of H2O2 on the basal and evoked-testosterone release from primary Leydig cells, the protein expressions of cytochrome P450 side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein were also investigated. Our preparation was found to contain approximately 87% Leydig cells and very few macrophages. The results demonstrated that H2O2 (>1 x 10(-4) M) significantly inhibited the basal and hCG-stimulated testosterone release. H2O2 abolished forskolin- or 8-Br-cAMP-evoked testosterone release. In the presence of pregnenolone, progesterone, or androstenedione, the inhibitory effect of H2O2 on testosterone release was prevented. H2O2 also inhibited pregnenolone production in the presence of trilostane (an inhibitor of 3beta-hydroxysteroid dehydrogenase), therefore diminished the activity of P450scc in Leydig cells. In addition to the inhibition of hormone secretion, H2O2 also regulated steroidogenesis by diminishing protein expression of StAR. These results suggest that H2O2 acts directly on rat Leydig cells to diminish testosterone production by inhibiting P450scc activity and StAR protein expression.  相似文献   

9.
Immature female rats treated with superovulatory doses of pregnant mare serum gonadotropin (PMSG) were used to study the effects of the antiandrogen hydroxyflutamide on steroid production, particularly the biologically active androgens, in two experiments. In the first experiment, animals were given either 5 mg hydroxyflutamide or vehicle alone at 30 and 36 h following 40 IU PMSG. Compared with the vehicle group, hydroxyflutamide treatment significantly reduced the percentage of degenerate oocytes recovered from oviducts (p less than 0.05). Serum levels of testosterone and androstenedione, and their aromatized product 17 beta-estradiol, significantly decreased (p less than 0.05) in the hydroxyflutamide-treated group; however, nonaromatizable androgen, 5 alpha-dihydrotestosterone, was not affected. In the second experiment, ovaries obtained 48 h after stimulation with 4 or 40 IU PMSG were incubated with and without hydroxyflutamide (10(-5) M) and (or) testosterone (10(-7) M) to study [4-14C]pregnenolone metabolism to major steroids. In 40 IU stimulated ovaries, hydroxyflutamide significantly decreased the metabolism of pregnenolone to progesterone (p less than 0.01) and androstenedione (p less than 0.01), while the production of 17 beta-estradiol increased significantly (p less than 0.05); however, pregnenolone conversions to testosterone and 5 alpha-dihydrotestosterone were not affected. Testosterone completely reversed the hydroxyflutamide-induced alteration of pregnenolone metabolism. In contrast, there was no difference in the pregnenolone conversion patterns between untreated and hydroxyflutamide or hydroxyflutamide plus testosterone groups in 4 IU stimulated ovaries. Present results confirm our previous finding that hydroxyflutamide decreases the percentage of abnormal oocytes recovered from superovulating rats and indicates that this hydroxyflutamide effect may be partly mediated by altered ovarian steroidogenesis following inhibition of androgen binding in the ovary.  相似文献   

10.
In humans, the onset of adrenache has been found to occur with the appearance of the zona reticularis, the inner zone of the adrenal cortex. Since an increase in the volume of adrenal cortex during maturation in the guinea pig has been associated with the growth of the zona reticularis, we were interested in investigating the changes in adrenal steroidogenesis during maturation in this species. In addition, the effect of androgens on adrenal steroidogenesis was studied. We demonstrated that between 1 and 10 weeks of age, a period of maximal growth of the adrenals in the guinea pig, there is a decrease in the concentrations of adrenal pregnenolone, cortisol, dehydroepiandrosterone, testosterone, androstenedione, and 11 beta-hydroxyandrostenedione, suggesting lower steroid production by the guinea pig adrenals. In plasma, we observed that the concentration of 11 beta-hydroxyandrostenedione (the sole C19 steroid present after castration) remained unchanged during maturation, while cortisol and corticosterone were lower between 1 and 4 weeks of age. Although castration as well as the administration of the antiandrogen flutamide had no effect on adrenal steroidogenesis, dihydrotestosterone caused an inhibition of cortisol and corticosterone levels in the adrenals while the concentrations of progestins (namely, pregnenolone, 17-hydroxypregnenolone, progesterone, and 17-hydroxyprogesterone) tended to increase in the adrenals, thus suggesting that dihydrotestosterone induces a blockade in the steroidogenic pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A Z Mehdi  T Sandor 《Steroids》1974,24(2):151-163
Incubations of whole homogenates of. the tiju lizard (Tupinambis sp.) adrenals tissue were carried out using 14C-labelled progesterone1*, pregnenolone and cholesterol. 14C-progesterone was metabolized to labelled 18-hydroxycorticosterone, aldosterone, corticosterone and 11-deoxycorticosterone. Identical metabolites plus 14C-progesterone were obtained from pregnenolone. Cholesterol-4-14C was transformed into products similar to those obtained from progesterone. In all these studies the elaboration of cortisol or any other 17-hydroxylated steroids could not be demonstrated. In another set of experiments, whole homogenate preparations from adrenals of the green lizard (lacerta viridis) were incubated with 14C-labelled androstenedione and testosterone. Ahdrostenedione was converted to testosterone and 11β-hydroxyandrostenedione. Testosterone was metabolized to 11β-hydroxyandrostenedione and androstenedione. The results indicate that the in vitro transformation of C-27 or C-21 radioactive substrate by lizard adrenals is similar to the other reptiles studied. However, it appears to possess 17β-hydroxysteroid oxido-reductase, though the adrenal tissue itself lacks 17α-hydroxylase activity.  相似文献   

12.
The present study reports steroid metabolism by corpora lutea (CL) obtained from skunks with diapausing embryos ('delay' CL) and with activated embryos (activated CL). CL from both reproductive periods were incubated with various radioactive precursors. Control incubations without any tissue or with 50 microliter of packed skunk blood cells were also conducted simultaneously. Incubation of skunk CL with [3H]-pregnenolone for 3 h resulted in 36% of the precursor accumulating as progesterone. Metabolism of [3H]dehydroepiandrosterone (DHEA) to androstenedione proceeded with approximately the same amount of product accumulating (34-46%) as was observed in the conversion of pregnenolone to progesterone. These results suggest that delta 5 isomerase, 3 beta-hydroxysteroid dehydrogenase, is the most prominent enzyme in skunk CL. Metabolism of [3H]pregnenolone to 17 alpha-hydroxypregnenolone and [3H]progesterone to 17 alpha-hydroxyprogesterone occurred at low rates (1-7%), suggesting the presence of C21 steroid 17 alpha-hydroxylase in skunk CL. Aromatase activity, as estimated by measuring accumulation of oestradiol-17 beta from [3H]testosterone, was demonstrated in activated CL. These results suggest that skunk CL appear to metabolize steroids in a manner similar to CL of other mustelids such as the ferret and American badger.  相似文献   

13.
Testicular steroidogenic enzymes in the microsomal fraction from immature pigs were investigated for the effects of phospholipids of known structure on androgen and 16-androstene biosynthesis. Untreated (control) microsomes metabolized pregnenolone to 17-hydroxypregnenolone, DHA and small quantities of progesterone, 17-hydroxyprogesterone, androstenedione and testosterone; and to 5,16-androstadien-3 beta-ol (andien-beta) and 4,16-androstadienone (dienone) in the 16-androstene pathway. Phosphatidyl(P)-serine, P-glycerol, P-ethanolamine, P-inositol, P-choline and phosphatidic acid did not significantly alter the 17-hydroxylase/C-17,20 lyase or "andien-beta-synthetase" activities. Thus, the C21 side-chain cleavage reactions appeared not to be dependent upon phospholipids for optimal activity. The conversion of pregnenolone to 4-ene steroids (progesterone, 17-hydroxyprogesterone, androstenedione and testosterone) was inhibited by dilinoleoyl-phosphatidyl-choline, but other phospholipids tested were without effect. On the other hand, the conversion of andien-beta to dienone was inhibited by P-serine, P-inositol and P-cholines with short saturated or long polyunsaturated acyl chains. Therefore, the presence of these phospholipids in pregnenolone incubations had different consequences for 3 beta-hydroxysteroid dehydrogenase-isomerase activities. It is concluded that substrate specific 3 beta-HSD-isomerases exist for androgen and 16-androstene biosynthesis and that phospholipids may play an intrinsic role in their catalytic activity.  相似文献   

14.
The potential biosynthetic capacity of testicular hormones was studied in immature, pubertal and aging guinea-pig. In their sexual development towards puberty, changes in the relationship of the steroids involved in the steroidogenic pathways were observed. The testosterone/androstenedione ratio changes markedly, showing an important increase with pubertal proximity. The testosterone in equilibrium androstenedione sequence, reversibly catalyzed by 17 beta-hydroxysteroid oxidoreductase (17 beta-oxido-reductase), clearly shifted towards androstenedione in immature animals irrespective of the precursor utilized. Post-pubertal animals showed a greater enzymatic activity in the 5-ene and 4-ene testicular synthesis pathways, testosterone production being greatest. In the aging animal, hormonal biosynthetic capacity falls. Reversion of the 17 beta-oxido-reductase activity could be one of the mechanisms responsible for the decrease in testosterone, as in immature guinea-pigs. In order to investigate the in vitro steroidogenic capacity of glands at different ages, minces of testicular tissue were incubated with labelled precursors. The studies were conducted in triplicate at 35 degrees C. For equal quantities of incubated tissue the non-metabolized amount of [3H]pregnenolone and [14C]progesterone, utilized as precursors, was different in post-pubertal and senescent animals: 55.7 +/- 3 vs 59.3 +/- 2.3% (P less than 0.01) for pregnenolone, and 50.1 +/- 3.3 vs 56.3 +/- 2.9% (P less than 0.01) for progesterone, respectively. Testosterone production was 12 +/- 2% in adult and 6.7 +/- 2.7% in senescent animals (P less than 0.01). The testosterone/androstenedione ratio was not significantly different in post-pubertal and senescent animals: 2.8 +/- 0.5 vs 2.4 +/- 0.4, but consistently higher than found in immature animals: 0.3 +/- 0.1. The lesser potential capacity of the aging tissue to synthesize testosterone could be explained by a decline in the glands capacity to metabolize the hormonal precursors.  相似文献   

15.
The metabolism of pregnenolone-7alpha-3H and progesterone-4-14C by human corpora lutea tissue of menstrual cycles and pregnancy was studied. In the incubations, equimolar mixtures of pregnenolone-7alpha-3H and progesterone-4-14C were used as substrates. Three corpora lutea of cycles were used as minced tissue. From those corpora lutea progesterone, 17-hydroxyprogesterone and androstenedione were formed, although no estrogens were formed. One corpus luteum of cycle and one corpus luteum of pregnancy were used as homogenated tissue, and those formed estrone and estradiol as well as the same three delta4-metabolites. The corpus luteum of cycle also formed testosterone. All metabolites including estrogens showed the lower 3H to 14C ratio than the starting ratio. 17-hydroxypregnenolone in only one corpus luteum, and no delta5-metabolites in the other four corpus luteum were identified. It is therefore proposed that the major pathway for estrogen formation in human corpus luteum is pregnenolone yields progesterone yields 17-hydroxyprogesterone yields androstenedione (or testosterone) yields estrone and estradiol.  相似文献   

16.
Dispersed mouse testicular interstitial cells were treated with the transglutaminase inhibitor monodansylcadaverine (500 microM) for 30 min. Subsequent incubation of the cells with [3H]pregnenolone increased formation of steroidogenic intermediates, tentatively identified as progesterone, 17 alpha-hydroxyprogesterone, and androstenedione, but decreased testosterone formation by monodansylcadaverine-treated cells. Measurement of 17-ketosteroid reductase activity (the enzyme that converts androstenedione to testosterone) demonstrated that monodansylcadaverine treatment caused a reversible, noncompetitive inhibition of this enzyme. These results suggest that transglutaminase catalyzed protein cross-links may influence the activity of 17-ketosteroid reductase.  相似文献   

17.
Female mice of the NMRI strain were treated with the synthetic oestrogen diethylstilboestrol (DES) for the first 5 days after birth. Pools of ovaries were removed from groups of 6-, 12-, 21-, 28- and 56-day-old females. An homogenate of an ovarian pool was incubated for 1 h in the presence of [3H]pregnenolone. Synthesized steroids were extracted and separated in a two-dimensional thin-layer chromatography system. Homogeneity of tentative steroids was verified with recrystallization to constant specific activity. Synthesis of [3H]progesterone and [3H]testosterone was demonstrated at 6 days, [3H]androstenedione at 12 days, [3H]17 alpha-hydroxyprogesterone at 21 days, and [3H]oestradiol-17 beta at 28 days. Up to 28 days (21 days for progesterone), the synthetic activity was lower in homogenates of DES-exposed ovaries than in control homogenates. After 28 days, values for recovered [3H]progesterone, [3H]androstenedione and [3H]oestradiol-17 beta were higher in DES homogenates than in control homogenates while the reverse was true for [3H]17 alpha-hydroxyprogesterone and [3H]testosterone. The results are compatible with an early and direct DES inhibitory effect on ovarian steroidogenesis and, later in immature life, a DES-induced disruption of the normal FSH-LH stimulation of ovarian development.  相似文献   

18.
Hypogonadal (hpg) mice were injected once daily with 10 ng, 50 ng or 1 microgram GnRH for 5, 10 or 20 days or 12 times daily with 4.2 ng GnRH for 5 days. Basal and hCG-stimulated production in vitro of androstenedione, testosterone and 5 alpha-androstane-3 alpha,17 beta-diol (androstanediol) were measured by radioimmunoassay. All doses of GnRH increased testicular weight and in-vitro androgen production although seminal vesicle weights were unchanged and serum testosterone concentrations remained undetectable. After 5 days' treatment androstenedione and androstanediol were the dominant androgens produced, the latter indicating the presence of high levels of 5 alpha-reductase. By 20 days testosterone production was predominant after treatment with higher doses of GnRH. Total androgen production (androstenedione + testosterone + androstanediol) after 5 and 10 days was similar at all concentrations of GnRH used. After 20 days' treatment total androgen production was significantly greater with 50 ng GnRH/day than with 10 or 1000 ng/day. Multiple daily injections of 4.2 ng GnRH (total dose 50 ng/day) had no greater effect on androgen production in vitro compared to single daily injections of 50 ng. This suggests that under the conditions used in this study the testis does not require pulsatile release of the gonadotrophins. The pattern of [3H]pregnenolone metabolism was measured after 5 days injection of 50 ng GnRH/day. Compared to control hpg animals there was a significant increase in formation of C19 steroids, synthesis being solely through the 4-ene pathway. These results show that GnRH treatment of hpg mice will induce testicular steroidogenesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Dehydroepiandrosterone, androstenedione, testosterone, pregnenolone and progesterone concentration was determined by our sensitive gas-liquid chromatographic method in ovarian tissues obtained from surgery of patients without hirsutism and with Stein-Leventhal syndrome. The steroids, except testosterone, were detectable in all ovaries studied. Dehydroepiandrosterone and androstenedione, regarded as preandrogens, were present in an increased amount in almost all patients with polycycstic ovaries. Gas chromatographic evidence was obtained for the presence of testosterone in two of the cases. The delta4/3betaOH ratio reflecting 3beta-hydroxysteroid dehydrogenase activity was decreased only in same patients with the Stein-Leventhal syndrome suggesting that the impaired function of this enzyme is not an obligatory feature of polycystic ovaries. Concentration of pregnenolone and progesterone measured in a part of cases varied in a great range although the determination was caried out before luteal phase. Simultaneous determination of hormones in both ovarian tissues revealed an active and an inactive period of the gland in the given time, since a great difference of hormone concentration in bilateral ovarian tissues were observed. A comparison of hormone content in ovaries and the urinary excretion of metabolites showed poor correlation between the two parameters of hormone production.  相似文献   

20.
Whereas mare corpus luteum does not produce androgens or estrogens in vivo, the incubation of mare corpus luteum microsomes with progesterone and NADPH resulted in 17 alpha-hydroxyprogesterone and estrogen production with a small yield of androstenedione. In the presence of an aromatase inhibitor (4-hydroxyandrostenedione), 17 alpha-hydroxyprogesterone and androstenedione were accumulated. Aromatization of testosterone and androstenedione occurred via stereospecific loss of the 1 beta, 2 beta hydrogen atoms and was inhibited by MgCl2, KCl, and EDTA. The Km of estrogen synthetase from equine corpus luteum for testosterone was 18.5 +/- 2.7 nM and for androstenedione was 11.5 +/- 1.5 nM. 19-Norandrogens were aromatized with a slightly higher efficiency than were androgens, but the affinity of the aromatase was lower for 19-norandrogens than for androgens. Our results suggest that aromatases from equine testis and corpus luteum are closely related enzymes. On the other hand, the question arises as to the relationship among the cell origin, the synthetizing abilities, and in vivo production of the corpus luteum in different mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号