共查询到20条相似文献,搜索用时 120 毫秒
1.
Four fluoro modified universal nucleobases have been synthesized. The universal nucleobases 1 and 2, containing a 2,4-difluorobenzene as nucleobase and a 4,6-difluorobenzimidazole, respectively, were chemically incorporated into a selected hammerhead ribozyme sequence which has already been retrovirally expressed as an anti-HIV ribozyme to investigate their effect on the catalytic activity of the ribozymes. The substitution of the natural nucleosides with either 1 or 2 results only in a small decrease of the catalytic activity. The Km value for the monosubstituted ribozyme with a 2,4-difluorobenzene is 309 nM(-1), the corresponding kcat is 2.91 x 10(-3) min(-1). A disubstituted hammerhead ribozyme carrying one of each modification has also been synthesized. For a further stabilization of the ribozyme/substrate complex 2'-(beta-aminoethoxy) modified fluorinated nucleosides 15 and 16 have been developed. 相似文献
2.
Anthony Maina Brittany A. Blackman Christopher J. Parronchi Eva Morozko Maria E. Bender Allan D. Blake David Sabatino 《Bioorganic & medicinal chemistry letters》2013,23(19):5270-5274
Linear, branch and hyperbranch siRNAs were effectively prepared for down-regulating GRP78 expression and inducing cell death in HepG2 liver cancer cells. Branch and hyperbranch GRP78 siRNAs were synthesized by automated solid-phase synthesis in good yields (44–78%) and isolated in excellent purities (>99%) following HPLC purification. Moreover, siRNAs adopted stable intramolecular hybrids as discerned by native PAGE and thermal denaturation studies. These sequences also exhibited the pre-requisite A-type helical trajectory for triggering RNAi activity as determined by CD spectroscopy. Biological studies confirmed potent suppression of GRP78 expression (50–60%) while compromising cancer cell viability by ~20%. Thus, branch and hyperbranch siRNAs may serve as potent siRNA candidates in cancer gene therapy applications. 相似文献
3.
Sequence-specific gene silencing by small interfering RNA (siRNA) is an intense area of focus in the development of novel therapeutic agents. Currently, there are two major hurdles to achieving clinically effective siRNA-based therapeutics: establishment of an efficient delivery system that transfers the siRNA to the correct tissue(s); and the reduction of unintended immunotoxicity associated with unmodified siRNA. We have developed a novel liver-specific delivery system of apolipoprotein A-I-decorated cationic lipids (DTC-Apo). Here, we show that intravenous injection of an unmodified hepatitis B virus (HBV)-specific siRNA encapsulated in DTC-Apo activates the innate immune response in mice. However, 2′-O-methyl (2′-OMe) modification of siRNA sense-strand uridine or uridine/adenosine residues efficiently abrogated the immunostimulatory properties of the siRNA and also silenced viral replication. In contrast, pyrimidine modification by 2′-OMe or 2′-fluoro (2’-F) substitution failed to circumvent liposome-induced immune recognition. Our findings provide useful information for the design of chemically-modified siRNAs for in vivo applications. 相似文献
4.
Seela F Lin W Kazimierczuk Z Rosemeyer H Glaron V Peng X He Y Ming X Andrzejewska M Gorska A Zhang X Eickmeier H La Colla P 《Nucleosides, nucleotides & nucleic acids》2005,24(5-7):859-863
The synthesis of base modified L-nucleosides is described with pyrrolo[2,3-d]pyrimidines, pyrazolo[3,4-d]pyrimidines, benzimidazoles, and imidazo[1,2-a]-s-triazines as nucleobases. The conformation of the nucleosides is studied and the antiviral activity is evaluated. 相似文献
5.
Petrova NS Meschaninova MI Venyaminova AG Zenkova MA Vlassov VV Chernolovskaya EL 《FEBS letters》2011,585(14):2352-2356
The thermodynamic properties of siRNA duplexes are important for their silencing activity. siRNAs with high thermodynamic stability of both the central part of the duplex and in the whole, usually display low silencing activity. Destabilization of the central part of the siRNA duplex could increase its silencing activity. However, mismatches located in the central part of the duplex could substantially decrease the amount of RNAi efficacy, hindering active RISC formation and function. In this study, we examined the impact of duplex destabilization by nucleotide substitutions in the central part (7-10 nt counting from the 5'-end of the antisense strand) of the nuclease-resistant siRNA on its silencing activity. 相似文献
6.
Morrissey DV Lockridge JA Shaw L Blanchard K Jensen K Breen W Hartsough K Machemer L Radka S Jadhav V Vaish N Zinnen S Vargeese C Bowman K Shaffer CS Jeffs LB Judge A MacLachlan I Polisky B 《Nature biotechnology》2005,23(8):1002-1007
The efficacy of lipid-encapsulated, chemically modified short interfering RNA (siRNA) targeted to hepatitis B virus (HBV) was examined in an in vivo mouse model of HBV replication. Stabilized siRNA targeted to the HBV RNA was incorporated into a specialized liposome to form a stable nucleic-acid-lipid particle (SNALP) and administered by intravenous injection into mice carrying replicating HBV. The improved efficacy of siRNA-SNALP compared to unformulated siRNA correlates with a longer half-life in plasma and liver. Three daily intravenous injections of 3 mg/kg/day reduced serum HBV DNA >1.0 log(10). The reduction in HBV DNA was specific, dose-dependent and lasted for up to 7 d after dosing. Furthermore, reductions were seen in serum HBV DNA for up to 6 weeks with weekly dosing. The advances demonstrated here, including persistence of in vivo activity, use of lower doses and reduced dosing frequency are important steps in making siRNA a clinically viable therapeutic approach. 相似文献
7.
Li ZS Qiao RP Du Q Yang ZJ Zhang LR Zhang PZ Liang ZC Zhang LH 《Bioconjugate chemistry》2007,18(4):1017-1024
A novel class of aminoisonucleoside was synthesized and incorporated into a luciferase gene-targeting siRNA. Structural and functional analyses of such a kind of siRNAs indicated that sense strand modifications with aminoisonucleoside at the 3' or 5' terminal, such as ssIso-1 and ssIso-2, have less effect on RNA duplex thermal and serum stabilities, and their functional activities are also comparable to their native siRNAs. In contrast, antisense strand modifications with aminoisonucleoside at the corresponding positions, such as asIso-2 or asIso-1, bring a striking negative effect on RNA duplex stability but still maintain around 40-50% of gene knockdown. 相似文献
8.
Single-stranded antisense siRNAs guide target RNA cleavage in RNAi 总被引:75,自引:0,他引:75
Small interfering RNAs (siRNAs) are the mediators of mRNA degradation in the process of RNA interference (RNAi). Here, we describe a human biochemical system that recapitulates siRNA-mediated target RNA degradation. By using affinity-tagged siRNAs, we demonstrate that a single-stranded siRNA resides in the RNA-induced silencing complex (RISC) together with eIF2C1 and/or eIF2C2 (human GERp95) Argonaute proteins. RISC is rapidly formed in HeLa cell cytoplasmic extract supplemented with 21 nt siRNA duplexes, but also by adding single-stranded antisense RNAs, which range in size between 19 and 29 nucleotides. Single-stranded antisense siRNAs are also effectively silencing genes in HeLa cells, especially when 5'-phosphorylated, and expand the repertoire of RNA reagents suitable for gene targeting. 相似文献
9.
RNA干扰(RNAi)文库研究进展 总被引:2,自引:0,他引:2
RNAi是由双链RNA(dsRNA)引发的转录后基因沉默现象,由dsRNA产生的小分子siRNA会导致生物体内同源转录产物特异性降解,是基因表达调控的重要方式之一。目前RNAi技术已发展成为遗传分析强有力的工具,在基因功能分析鉴定方面发挥越来越大的作用。构建大规模的RNAi文库进而转变成RNAi突变体库是功能基因组学研究的重要手段,因此如何利用简单经济的方法构建特定物种的高效RNAi文库就成为关键问题。综述了目前构建RNAi文库的不同方法以及每种构建方法的优点和存在的不足,为不同研究目的的RNAi文库的构建提供参考。 相似文献
10.
11.
siRNA介导的RNA干扰技术已经成为基因功能研究和开展疾病治疗的有用工具.近年发现,siRNA在哺乳动物体内可激活天然免疫系统,诱导干扰素等炎症因子的分泌,并且可非特异性抑制某些非靶基因的表达,有可能极大限制RNA干扰技术的应用.进行高效特异性siRNA的设计和修饰,以保持或者增强siRNA的特异性靶基因沉默作用,又消除siRNA对机体的非靶免疫副作用,成为使siRNA安全有效应用于临床治疗的关键. 相似文献
12.
13.
Huang Huang Renping Qiao Deyao Zhao Tong Zhang Youxian Li Fan Yi Fangfang Lai Junmei Hong Xianfeng Ding Zhenjun Yang Lihe Zhang Quan Du Zicai Liang 《Nucleic acids research》2009,37(22):7560-7569
Silencing specificity is a critical issue in the therapeutic applications of siRNA, particularly in the treatment of single nucleotide polymorphism (SNP) diseases where discrimination against single nucleotide variation is demanded. However, no generally applicable guidelines are available for the design of such allele-specific siRNAs. In this paper, the issue was approached by using a reporter-based assay. With a panel of 20 siRNAs and 240 variously mismatched target reporters, we first demonstrated that the mismatches were discriminated in a position-dependent order, which was however independent of their sequence contexts using position 4th, 12th and 17th as examples. A general model was further built for mismatch discrimination at all positions using 230 additional reporter constructs specifically designed to contain mismatches distributed evenly along the target regions of different siRNAs. This model was successfully employed to design allele-specific siRNAs targeting disease-causing mutations of PIK3CA gene at two SNP sites. Furthermore, conformational distortion of siRNA-target duplex was observed to correlate with the compromise of gene silencing. In summary, these findings could dramatically simplify the design of allele-specific siRNAs and might also provide guide to increase the specificity of therapeutic siRNAs. 相似文献
14.
In vivo activity of nuclease-resistant siRNAs 总被引:15,自引:2,他引:15
Layzer JM McCaffrey AP Tanner AK Huang Z Kay MA Sullenger BA 《RNA (New York, N.Y.)》2004,10(5):766-771
Chemical modifications have been incorporated into short interfering RNAs (siRNAs) without reducing their ability to inhibit gene expression in mammalian cells grown in vitro. In this study, we begin to assess the potential utility of 2'-modified siRNAs in mammals. We demonstrate that siRNA modified with 2'-fluoro (2'-F) pyrimidines are functional in cell culture and have a greatly increased stability and a prolonged half-life in human plasma as compared to 2'-OH containing siRNAs. Moreover, we show that the 2'-F containing siRNAs are functional in mice and can inhibit the expression of a target gene in vivo. However, even though the modified siRNAs have greatly increased resistance to nuclease degradation in plasma, this increase in stability did not translate into enhanced or prolonged inhibitory activity of target gene reduction in mice following tail vein injection. Thus, this study shows that 2'-F modified siRNAs are functional in vivo, but that they are not necessarily more potent than unmodified siRNAs in animals. 相似文献
15.
16.
Nan Zhang Chunyan Tan Puqin Cai Peizhuo Zhang Yufen Zhao Yuyang Jiang 《Bioorganic & medicinal chemistry》2009,17(6):2441-2446
siRNAs modified with morpholino nucleoside analogues were synthesized and their biological properties were examined in details. The gene silence abilities of modified siRNAs were correlated to the positions of the modifications, some of which appeared to be more potent than the native siRNA. The 3′-end modification improved the stability of siRNAs in serum significantly. Furthermore, the dose–response and time-course experiments demonstrated that the siRNAs with 3′-end modification have potent gene silence activity at lower concentration and prolonged action time. These favorable properties make the morpholino modified siRNA a potentially useful tool in therapeutic applications. 相似文献
17.
In this paper we report the synthesis of four fluorinated analogues of brassinosteroids in which fluorine was introduced stereoselectively at C-2. The bioactivity of these new compounds was evaluated using the rice lamina inclination test. The results show that two of these analogues elicit high bioactivity, suggesting the involvement of hydrogen bond interactions between the active brassinosteroids and their cellular receptor. 相似文献
18.
RNA interference induced by siRNAs modified with 4'-thioribonucleosides in cultured mammalian cells 总被引:2,自引:0,他引:2
Short interfering RNAs (siRNAs) variously modified with 4'-thioribonucleosides against the Photinus luciferase gene were tested for their induction of the RNA interference (RNAi) activity in cultured NIH/3T3 cells. Results indicated that modifications at the sense-strand were well tolerated for RNAi activity except for full modification with 4'-thioribonucleosides. However, the activity of siRNAs modified at the antisense-strand was dependent on the position and the number of modifications with 4'-thioribonucleosides. Since modifications of siRNAs with 4'-thioribonucleosides were well tolerated in RNAi activity compared with that of 2'-O-methyl nucleosides, 4'-thioribonucleosides might be potentially useful in the development of novel and effective chemically modified siRNAs. 相似文献
19.
N. A. Nikitenko T. Speiseder E. L. Chernolovskaya M. A. Zenkova T. Dobner V. S. Prassolov 《Molecular Biology》2016,50(1):164-167
Human adenoviruses, in particular D8, D19, and D37, cause ocular infections. Currently, there is no available causally directed treatment, which efficiently counteracts adenoviral infectious diseases. In our previous work, we showed that gene silencing by means of RNA interference is an effective approach for downregulation of human species D adenoviruses replication. In this study, we compared the biological activity of siRNAs and their modified analogs targeting human species D adenoviruses DNA polymerase. We found that one of selectively 2’-O-methyl modified siRNAs mediates stable and long-lasting suppression of the target gene (12 days post transfection). We suppose that this siRNA can be used as a potential therapeutic agent against human species D adenoviruses. 相似文献
20.