首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reversion analysis has been employed to isolate suppressors that restore export of a unique LamB signal sequence mutant. The mutation results in a substitution of Arg for Met at position 19, which prevents LamB export to the outer membrane and leads to a Dex- phenotype. Unlike other LamB signal sequence mutants utilized for reversion analysis, LamB19R becomes stably associated with the inner membrane in an export-specific manner. In this study, Dex+ revertants were selected and various suppressors were isolated. One of the extragenic suppressors, designated prlZ1, was chosen for further study. prlZ1 maps to 69 min on the Escherichia coli chromosome. The suppressor is dominant and SecB dependent. In addition to its effect on lamB19R, prlZ1 suppresses the export defect of signal sequence point mutations at positions 12, 15, and 16, as well as several point mutations in the maltose-binding protein signal sequence. prlZ1 does not suppress deletion mutations in either signal sequence. This pattern of suppression can be explained by interaction of a helical LamB signal sequence with the suppressor.  相似文献   

2.
We are studying the mechanism by which the LamB protein is exported to the outer membrane of Escherichia coli. Using two selection procedures based on gene fusions, we have identified a number of mutations that cause alterations in the LamB signal sequence. Characterization of the mutant strains revealed that although many such mutations block LamB export to greater than 95%, others have essentially no effect. These results allow an analysis of the functions performed by the various molecular components of the signal sequence. Our results suggest that a critical subset of four amino acids is contained within the central hydrophobic core of the LamB signal sequence. If this core can assume an alpha-helical conformation, these four amino acids comprise a recognition site that interacts with a component of the cellular export machinery. Since mechanisms of protein localization appear to have been conserved during evolution, the principles established by these results should be applicable to similar studies in eukaryotic cells.  相似文献   

3.
Selection for suppressors of defects in the signal sequence of secretory proteins has led most commonly to identification of prlA alleles and less often to identification of prlG alleles. These genes, secY/prlA and secE/prlG, encode integral membrane components of the protein translocation system of Escherichia coli. We demonstrate that an outer membrane protein, LamB, that lacks a signal sequence can be exported with reasonable efficiency in both prlA and prlG suppressor strains. Although the signal sequence is not absolutely required for export of LamB, the level of export in the absence of prl suppressor alleles is exceedingly low. Such strains are phenotypically LamB-, and functional LamB can be detected only by using sensitive infectious-center assays. Suppression of the LamB signal sequence deletion is dependent on normal components of the export pathway, indicating that suppression is not occurring through a bypass mechanism. Our results indicate that the majority of the known prlA suppressors function by an identical mechanism and, further, that the prlG suppressors work in a similar fashion. We propose that both PrlA and PrlG suppressors lack a proofreading activity that normally rejects defective precursors from the export pathway.  相似文献   

4.
A synthetic peptide corresponding to the signal sequence of wild type Escherichia coli lambda-receptor protein (LamB) inhibits in vitro translocation of precursors of both alkaline phosphatase and outer membrane protein A into E. coli membrane vesicles (half-maximal inhibition at 1-2 microM). By contrast, the inhibitory effect was nearly absent in a synthetic peptide corresponding to the signal sequence from a mutant strain that harbors a deletion mutation in the LamB signal region and displays an export-defective phenotype for this protein in vivo. Two peptides derived from pseudorevertant strains that arose from the deletion mutant and exported LamB in vivo were found to inhibit in vitro translocation with effectiveness that correlated with their in vivo export ability. Controls indicated that these synthetic signal peptides did not disrupt the E. coli membrane vesicles. These results can be interpreted to indicate that the presequences of exported proteins interact specifically with a receptor either in the E. coli inner membrane or in the cytoplasmic fraction. However, biophysical data for the family of signal peptides studied here reveal that they will spontaneously insert into a lipid membrane at concentrations comparable to those that cause inhibition. Hence, an indirect effect mediated by the lipid bilayer of the membrane must be considered.  相似文献   

5.
The regulation of synthesis and export of outer membrane proteins of Escherichia coli was examined by overexpressing ompC in multicopy either from its own promoter or from an inducible promoter in an expression vector. Overexpression of OmpC protein resulted in a nearly complete inhibition of synthesis of the OmpA and LamB outer membrane proteins but had no effect on synthesis of the periplasmic maltose-binding protein. Immunoprecipitation of labeled proteins showed no evidence of accumulation of uncleaved precursor forms of OmpA or maltose-binding protein following induction of OmpC overexpression. The inhibition of OmpA and LamB was tightly coupled to OmpC overexpression and occurred very rapidly, reaching a high level within 2 min after induction. OmpC overexpression did not cause a significant decrease in expression of a LamB-LacZ hybrid protein produced from a lamB-lacZ fusion in which the fusion joint was at the second amino acid of the LamB signal sequence. There was no significant decrease in rate of synthesis of ompA mRNA as measured by filter hybridization of pulse-labeled RNA. These results indicate that the inhibition is at the level of translation. We propose that cells are able to monitor expression of exported proteins by sensing occupancy of some limiting component in the export machinery and use this to regulate translation of these proteins.  相似文献   

6.
In order to identify sequences involved in the localization of LamB, an outer membrane protein from E coli K12, mutagenesis by linker insertion has been performed on a lamB gene copy carried on a plasmid devised for this purpose. An analysis of the first set of 16 clones constructed by this technique shows that, in these clones, the lamB protein is altered either by frameshift mutations leading to abnormal COOH terminal (usually premature termination) or by in-phase deletions or small insertions. Except for two in-phase linker insertions, which only slightly changed the behavior of the protein, the modified proteins are either toxic to cell growth or unstable. In all cases examined so far, the modified proteins were in the outer membrane. We suggest that toxicity is due to incorrect folding, which leads to disruption of the outer membrane. The nature of the genetic alterations leads to the hypothesis that the first 183 amino acids of the LamB mature protein contain, together with the signal sequence, all the instructions needed for proper localization.  相似文献   

7.
It has been shown that the synthesis of an export-defective protein can interfere with the normal export process in Escherichia coli by limiting the availability of SecB protein, a component of the export apparatus (Collier, D.N., Bankaitis, V.A., Weiss, J.B., and Bassford, P.J. (1988) Cell 53, 273-283). Consistent with this observation, we find that the interference elicited by an export-defective LamB protein is a titratable response resulting from the limitation of a single ligand. We have mapped the interfering region in LamB to between amino acids 320 and 380 of the mature protein. Expression of this sequence in the form of a LacZ-LamB-LacZ fusion protein elicits the export interference phenotype. Deletion of the sequence from an export-defective LamB protein eliminates the ability of this protein to interfere with the export of other secreted proteins. Together, these findings show that this sequence is both necessary and sufficient to cause export interference. Surprisingly, deletion of this sequence from an otherwise wild-type LamB protein does not cause the mutant LamB product to exhibit any obvious export defect. Based on our results, we propose that SecB interacts with both amino acids 320-380 of mature LamB and the LamB signal sequence during initiation of the export process.  相似文献   

8.
In the accompanying paper (Altman, E., Bankaitis, V.A., and Emr, S.D. (1990) J. Biol. Chem. 265, 18148-18153) a putative SecB binding site was identified in the mature LamB protein. The export of wild-type LamB was unperturbed when this region was removed, however, suggesting the presence of a second site of interaction between SecB and LamB. In this paper we show that the interference caused by export-defective LamB proteins is influenced by the amount of signal sequence that is present. If a large portion of the signal sequence is deleted then the interference levels are significantly reduced. This result suggests that a region of the signal sequence contributes to the interaction of SecB with the LamB protein. Using anti-SecB affinity chromatography, we demonstrated directly that the association of SecB protein with precursor LamB is dependent on the presence of both the LamB signal sequence and the interfering region which maps to amino acids 320-380 of mature LamB. Although the interfering region is not necessary for the export of wild-type LamB under normal conditions, when the signal sequence is mutationally altered the interfering region is required to promote the efficient export of LamB protein. Also, deletion of the interfering region eliminates the ability of wild-type LamB precursor to be maintained in an export competent conformation in vivo. Collectively, our results indicate that efficient export of the LamB protein is achieved by an interaction with SecB that involves both the LamB signal sequence and the interfering region in mature LamB.  相似文献   

9.
10.
The lamB701-708 signal sequence mutation reduces expression of LamB, an outer membrane protein of Escherichia coli. To investigate the possibility that synthesis and export of LamB are coupled, as suggested by the expression defect of the lamB701-708 mutation, we isolated intragenic suppressors of the lamB701-708 mutation. The expression defect imposed by the lamB701-708 mutation is suppressed by an export-defective signal sequence mutation, suggesting that translation and export are coupled. The additional observation that not all export-defective signal sequence mutations suppressed the lamB701-708 expression defect suggests that translational arrest can be uncoupled from export.  相似文献   

11.
R Freudl  H Schwarz  M Klose  N R Movva    U Henning 《The EMBO journal》1985,4(13A):3593-3598
Information, in addition to that provided by signal sequences, for translocation across the plasma membrane is thought to be present in exported proteins of Escherichia coli. Such information must also exist for the localization of such proteins. To determine the nature of this information, overlapping inframe deletions have been constructed in the ompA gene which codes for a 325-residue major outer membrane protein. In addition, one deletion, encoding only the NH2-terminal part of the protein up to residue 160, was prepared. The location of each product was determined by immunoelectron microscopy. Proteins missing residues 4-45, 43-84, 46-227, 86-227 or 160-325 of the mature protein were all efficiently translocated across the plasma membrane. The first two proteins were found in the outer membrane, the others in the periplasmic space. It has been proposed that export and sorting signals consist of relatively small amino acid sequences near the NH2 terminus of an outer membrane protein. On the basis of sequence homologies it has also been suggested that such proteins possess a common sorting signal. The locations of the partially deleted proteins described here show that a unique export signal does not exist in the OmpA protein. The proposed common sorting signal spans residues 1-14 of OmpA. Since this region is not essential for routing the protein, the existence of a common sorting signal is doubtful. It is suggested that information both for export (if existent) and localization lies within protein conformation which for the former process should be present repeatedly in the polypeptide.  相似文献   

12.
Genetic mapping of antigenic determinants on a membrane protein   总被引:9,自引:0,他引:9  
The antigenic determinants recognized by two monoclonal antibodies were mapped on LamB, an outer membrane protein of Escherichia coli. The procedure consisted of performing immunoprecipitation experiments with extracts of strains which produced truncated fragments of LamB, either in a free form (deletion and nonsense mutants) or fused to another polypeptide (malK-lamB and lamB-lacZ fusion strains). The conclusion is that the two antigenic determinants are located within 70 residues from the COOH-terminal end of LamB, which contains a total of 421 amino acids. Since these two antigenic sites were previously demonstrated to be exposed at the cell surface, it follows that a COOH-terminal portion of LamB must be located on the outer surface of the outer membrane.  相似文献   

13.
Translational control of exported proteins in Escherichia coli   总被引:5,自引:4,他引:1       下载免费PDF全文
We recently described the suppression of export of a class of periplasmic proteins of Escherichia coli caused by overproduction of a C-terminal truncated periplasmic enzyme (GlpQ'). This truncated protein was not released into the periplasm but remained attached to the inner membrane and was accessible from the periplasm. The presence of GlpQ' in the membrane strongly reduced the appearance in the periplasm of some periplasmic proteins, including the maltose-binding protein (MBP), but did not affect outer membrane proteins, including the lambda receptor (LamB) (R. Hengge and W. Boos, J. Bacteriol., 162:972-978, 1985). To investigate this phenomenon further we examined the fate of MBP in comparison with the outer membrane protein LamB. We found that not only localization but also synthesis of MBP was impaired, indicating a coupling of translation and export. Synthesis and secretion of LamB were not affected. The possibility that this influence was exerted via the level of cyclic AMP could be excluded. Synthesis of MBP with altered signal sequences was also reduced, demonstrating that export-defective MBP which ultimately remains in the cytoplasm abortively enters the export pathway. When GlpQ' was expressed in a secA51(Ts) strain, the inhibition of MBP synthesis caused by GlpQ' was dominant over the precursor accumulation usually caused by secA51(Ts) at 41 degrees C. Therefore, GlpQ' acts before or at the level of recognition by SecA. For LamB the usual secA51(Ts) phenotype was observed. We propose a mechanism by which GlpQ' blocks an yet unknown membrane protein, the function of which is to couple translation and export of a subclass of periplasmic proteins.  相似文献   

14.
lamBA23DA25Y and lamBA23YA25Y tether LamB to the inner membrane by blocking signal sequence processing. We isolated suppressors of lamBA23DA25Y and lamBA23YA25Y, all of which mapped within the LamB signal sequence. Most interesting were mutations that changed an amino acid with a strong positive charge to an amino acid with no charge. Further characterization of two such suppressors revealed that they produce functional LamB that is localized to the outer membrane with its entire signal sequence still attached. Biochemical analysis shows that mutant LamB monomer chases into an oligomeric species with properties different from those of wild-type LamB trimer. Because assembly of mutant LamB is slowed, these mutations provide useful tools for the characterization of LamB folding intermediates.  相似文献   

15.
A progenitor of the outer membrane LamB trimer.   总被引:7,自引:3,他引:4       下载免费PDF全文
During its localization to the outer membrane, LamB possesses distinctive biochemical properties as it passes through the cytoplasmic membrane. Because LamB entered this dynamic state with an attached signal sequence and leaves after cleavage, we call this export-related form of LamB the early-translocation form (et-LamB).  相似文献   

16.
In order to localize the information within PhoE protein of Escherichia coli K-12 required for export of the protein to the outer membrane, we have generated deletions throughout the phoE gene. Immunocytochemical labelling on ultrathin cryosections revealed that the polypeptides encoded by the mutant alleles are transported to, and accumulate in, the periplasm. These results show that, except for the signal sequence, there is no specific sequence within the PhoE protein that is essential for transport through the cytoplasmic membrane. The overall structure of the protein, rather than a particular sequence of amino acids, seems to be important for assembly into the outer membrane.  相似文献   

17.
A new strategy for combinatorial mutagenesis was developed and applied to residues 40 through 60 of LamB protein (maltoporin), with the aim of identifying amino acids important for LamB structure and function. The strategy involved a template containing a stop codon in the target sequence and a pool of random degenerate oligonucleotides covering the region. In vitro mutagenesis followed by selection for function (Dex+, ability to utilize dextrins) corrected the nonsense mutation and simultaneously forced incorporation of a random mutation(s) within the region. The relative importance of each residue within the target was indicated by the frequency and nature of neutral and deleterious mutations recovered at each position. Residues 41 through 43 in LamB accepted few neutral substitutions, whereas residues 55 through 57 were highly flexible in this regard. Consistent with this finding was that the majority of defective mutants were altered at residues 41 to 43. Characterization of these mutants indicated that the nature of residues 41 to 43 influenced the amount of stable protein in the outer membrane. These results, as well as the conserved nature of this stretch of residues among outer membrane proteins, suggest that residues 41 to 43 of LamB play an important role in the process of outer membrane localization.  相似文献   

18.
We studied whether information required for export is present within the mature form of the Escherichia coli 325-residue outer membrane protein OmpA. We had previously analyzed overlapping internal deletions in the ompA gene, and the results allowed us to conclude that if such information exists it must be present repeatedly within the membrane part of the protein encompassing amino acid residues 1 to 177 (R. Freudl, H. Schwarz, M. Klose, N. R. Movva, and U. Henning, EMBO J. 4:3593-3598, 1985). A deletion which removed the codons for amino acid residues 1 to 229 of the OmpA protein was constructed. In this construct the signal sequence was fused to the periplasmic part of the protein. The resulting protein, designated Pro-OmpA delta 1-229, was processed, and the mature 95-residue protein accumulated in the periplasm. Hence, information required for export does not exist within the OmpA protein.  相似文献   

19.
The synthesis of a membrane-bound MalE β-galactosidase hybrid protein, when induced by growth of Escherichia coli on maltose, leads to inhibition of cell division and eventually a reduced rate of mass increase. In addition, the relative rate of synthesis of outer membrane proteins, but not that of inner membrane proteins, was reduced by about 50%. Kinetic experiments demonstrated that this reduction coincided with the period of maximum synthesis of the hybrid protein (and another maltose-inducible protein, LamB). The accumulation of this abnormal protein in the envelope therefore appeared specifically to inhibit the synthesis, the assembly of outer membrane proteins, or both, indicating that the hybrid protein blocks some export site or causes the sequestration of some limiting factor(s) involved in the export process. Since the MalE protein is normally located in the periplasm, the results also suggest that the synthesis of periplasmic and outer membrane proteins may involve some steps in common. The reduced rate of synthesis of outer membrane proteins was also accompanied by the accumulation in the envelope of at least one outer membrane protein and at least two inner membrane proteins as higher-molecular-weight forms, indicating that processing (removal of the N-terminal signal sequence) was also disrupted by the presence of the hybrid protein. These results may indicate that the assembly of these membrane proteins is blocked at a relatively late step rather than at the level of primary recognition of some site by the signal sequence. In addition, the results suggest that some step common to the biogenesis of quite different kinds of envelope protein is blocked by the presence of the hybrid protein.  相似文献   

20.
OprM is the outer membrane component of the MexA-MexB-OprM efflux system of Pseudomonas aeruginosa. Multiple-sequence alignment of this protein and its homologues identified several regions of high sequence conservation that were targeted for site-directed mutagenesis. Of several deletions which were stably expressed, two, spanning residues G199 to A209 and A278 to N286 of the mature protein, were unable to restore antibiotic resistance in OprM-deficient strains of P. aeruginosa. Still, mutation of several conserved residues within these regions did not adversely affect OprM function. Mutation of the highly conserved N-terminal cysteine residue, site of acylation of this presumed lipoprotein, also did not affect expression or activity of OprM. Similarly, substitution of the OprM lipoprotein signal, including consensus lipoprotein box, with the signal peptide of OprF, the major porin of this organism, failed to impact on expression or activity. Apparently, acylation is not essential for OprM function. A large deletion at the N terminus, from A12 to R98, compromised OprM expression to some extent, although the deletion derivative did retain some activity. Several deletions failed to yield an OprM protein, including one lacking an absolutely conserved LGGGW sequence near the C terminus of the protein. The pattern of permissive and nonpermissive deletions was used to test a topology model for OprM based on the recently published crystal structure of the OprM homologue, TolC (V. Koronakis, A. Sharff, E. Koronakis, B. Luisi, and C. Hughes, Nature 405:914-919, 2000). The data are consistent with OprM monomer existing as a substantially periplasmic protein with four outer membrane-spanning regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号