首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone that functions in splicing mitochondrial group I and group II introns. Recent X-ray crystal structures of Mss116p in complex with ATP analogs and single-stranded RNA show that the helicase core induces a bend in the bound RNA, as in other DEAD-box proteins, while a C-terminal extension (CTE) induces a second bend, resulting in RNA crimping. Here, we illuminate these structures by using high-throughput genetic selections, unigenic evolution, and analyses of in vivo splicing activity to comprehensively identify functionally important regions and permissible amino acid substitutions throughout Mss116p. The functionally important regions include those containing conserved sequence motifs involved in ATP and RNA binding or interdomain interactions, as well as previously unidentified regions, including surface loops that may function in protein-protein interactions. The genetic selections recapitulate major features of the conserved helicase motifs seen in other DEAD-box proteins but also show surprising variations, including multiple novel variants of motif III (SAT). Patterns of amino acid substitutions indicate that the RNA bend induced by the helicase core depends on ionic and hydrogen-bonding interactions with the bound RNA; identify a subset of critically interacting residues; and indicate that the bend induced by the CTE results primarily from a steric block. Finally, we identified two conserved regions—one the previously noted post II region in the helicase core and the other in the CTE—that may help displace or sequester the opposite RNA strand during RNA unwinding.  相似文献   

3.
Experimental approaches for the identification of functionally important regions on the surface of a protein involve mutagenesis, in which exposed residues are replaced one after another while the change in binding to other proteins or changes in activity are recorded. However, practical considerations limit the use of these methods to small-scale studies, precluding a full mapping of all the functionally important residues on the surface of a protein. We present here an alternative approach involving the use of evolutionary data in the form of multiple-sequence alignment for a protein family to identify hot spots and surface patches that are likely to be in contact with other proteins, domains, peptides, DNA, RNA or ligands. The underlying assumption in this approach is that key residues that are important for binding should be conserved throughout evolution, just like residues that are crucial for maintaining the protein fold, i.e. buried residues. A main limitation in the implementation of this approach is that the sequence space of a protein family may be unevenly sampled, e.g. mammals may be overly represented. Thus, a seemingly conserved position in the alignment may reflect a taxonomically uneven sampling, rather than being indicative of structural or functional importance. To avoid this problem, we present here a novel methodology based on evolutionary relations among proteins as revealed by inferred phylogenetic trees, and demonstrate its capabilities for mapping binding sites in SH2 and PTB signaling domains. A computer program that implements these ideas is available freely at: http://ashtoret.tau.ac.il/ approximately rony Copyright 2001 Academic Press.  相似文献   

4.
Protein co-evolution under structural and functional constraints necessitates the preservation of important interactions. Identifying functionally important regions poses many obstacles in protein engineering efforts. In this paper, we present a bioinformatics-inspired approach (residue correlation analysis, RCA) for predicting functionally important domains from protein family sequence data. RCA is comprised of two major steps: (i) identifying pairs of residue positions that mutate in a coordinated manner, and (ii) using these results to identify protein regions that interact with an uncommonly high number of other residues. We hypothesize that strongly correlated pairs result not only from contacting pairs, but also from residues that participate in conformational changes involved during catalysis or important interactions necessary for retaining functionality. The results show that highly mobile loops that assist in ligand association/dissociation tend to exhibit high correlation. RCA results exhibit good agreement with the findings of experimental and molecular dynamics studies for the three protein families that are analyzed: (i) DHFR (dihydrofolate reductase), (ii) cyclophilin, and (iii) formyl-transferase. Specifically, the specificity (percentage of correct predictions) in all three cases is substantially higher than those obtained by entropic measures or contacting residue pairs. In addition, we use our approach in a predictive fashion to identify important regions of a transmembrane amino acid transporter protein for which there is limited structural and functional information available.  相似文献   

5.
6.
7.
Holloway AK  Begun DJ 《PloS one》2007,2(10):e1113
Adaptive protein evolution is pervasive in Drosophila. Genomic studies, thus far, have analyzed each protein as a single entity. However, the targets of adaptive events may be localized to particular parts of proteins, such as protein domains or regions involved in protein folding. We compared the population genetic mechanisms driving sequence polymorphism and divergence in defined protein domains and non-domain regions. Interestingly, we find that non-domain regions of proteins are more frequent targets of directional selection. Protein domains are also evolving under directional selection, but appear to be under stronger purifying selection than non-domain regions. Non-domain regions of proteins clearly play a major role in adaptive protein evolution on a genomic scale and merit future investigations of their functional properties.  相似文献   

8.
Physicochemcial properties of amino acids are important factors in determining protein structure and function. Most approaches make use of averaged properties over entire domains or even proteins to analyze their structure or function. This level of coarseness tends to hide the richness of the variability in the different properties across functional domains. This paper studies the conservation of physicochemical properties in a functionally similar family of proteins using a novel wavelet-based technique known as multiresolution analysis. Such an analysis can help uncover characteristics that can otherwise remain hidden. We have studied the protein kinase family of sequences and our findings are as follows: (a) a number of different properties are conserved over the functional catalytic domain irrespective of the sequence identities; (b) conservation of properties can be observed at different frequency levels and they agree well with the known structural/functional properties of the subdomains for the protein kinase family; (c) structural differences between the different kinase family members are reflected in the waveforms; and (d) functionally important mutations show distortions in the waveforms of conserved properties. The potential usefulness of the above findings in identifying functionally similar sequences in the twilight and midnight zones is demonstrated through a simple prediction model for the protein kinase family which achieved a recall of 93.7% and a precision of 96.75% in cross-validation tests.  相似文献   

9.
10.
Interspecific comparisons of protein sequences can reveal regions of evolutionary conservation that are under purifying selection because of functional constraints. Interpreting these constraints requires combining evolutionary information with structural, biochemical, and physiological data to understand the biological function of conserved regions. We take this integrative approach to investigate the evolution and function of the nuclear-encoded subunits of cytochrome c oxidase (COX). We find that the nuclear-encoded subunits evolved subsequent to the origin of mitochondria and the subunit composition of the holoenzyme varies across diverse taxa that include animals, yeasts, and plants. By mapping conserved amino acids onto the crystal structure of bovine COX, we show that conserved residues are structurally organized into functional domains. These domains correspond to some known functional sites as well as to other uncharacterized regions. We find that amino acids that are important for structural stability are conserved at frequencies higher than expected within each taxon, and groups of conserved residues cluster together at distances of less than 5 A more frequently than do randomly selected residues. We, therefore, suggest that selection is acting to maintain the structural foundation of COX across taxa, whereas active sites vary or coevolve within lineages.  相似文献   

11.
12.
13.
High-resolution data were used to analyze conformational changes of the main chain in two functional states of the ribosome elongation factor EF-Tu from Thermus aquaticus: the inactive state with guanosine-3'-diphosphate and the active state with guanosine-3'-triphosphate. Earlier only major changes in the effector loop of the domain I were determined. In this paper, all rearrangements in the main chain were observed upon shifting of C alpha-atoms from 1 to 8 A for each of the three protein domains. It was shown that these changes occur in numerous regions. New regions of changes were found, and they were located mostly in the loops of protein domains. Some of them are in the regions of interdomain interactions, others correlate with the known functionally important regions of EF-Tu binding with EF-Ts, aminoacyl-tRNA and the ribosome. Most changes induced by the conformational signal transfer from the guanosine-3'-triphosphate binding site occur just in the regions that are important for further stages of the factor functioning. The signal is transferred from domain I to domains II and III via interdomain contacts, predetermining fine fitting of functionally important regions to be involved in the following stages of the elongation cycle. The greatest part of the detected changes occurs in conservative residues of the whole family of bacterial factors, and only some of them are specific. This approach may prove useful for predetermining potential functionally important sites in other proteins.  相似文献   

14.

Background

In prokaryotes and some eukaryotes, genetic material can be transferred laterally among unrelated lineages and recombined into new host genomes, providing metabolic and physiological novelty. Although the process is usually framed in terms of gene sharing (e.g. lateral gene transfer, LGT), there is little reason to imagine that the units of transfer and recombination correspond to entire, intact genes. Proteins often consist of one or more spatially compact structural regions (domains) which may fold autonomously and which, singly or in combination, confer the protein''s specific functions. As LGT is frequent in strongly selective environments and natural selection is based on function, we hypothesized that domains might also serve as modules of genetic transfer, i.e. that regions of DNA that are transferred and recombined between lineages might encode intact structural domains of proteins.

Methodology/Principal Findings

We selected 1,462 orthologous gene sets representing 144 prokaryotic genomes, and applied a rigorous two-stage approach to identify recombination breakpoints within these sequences. Recombination breakpoints are very significantly over-represented in gene sets within which protein domain-encoding regions have been annotated. Within these gene sets, breakpoints significantly avoid the domain-encoding regions (domons), except where these regions constitute most of the sequence length. Recombination breakpoints that fall within longer domons are distributed uniformly at random, but those that fall within shorter domons may show a slight tendency to avoid the domon midpoint. As we find no evidence for differential selection against nucleotide substitutions following the recombination event, any bias against disruption of domains must be a consequence of the recombination event per se.

Conclusions/Significance

This is the first systematic study relating the units of LGT to structural features at the protein level. Many genes have been interrupted by recombination following inter-lineage genetic transfer, during which the regions within these genes that encode protein domains have not been preferentially preserved intact. Protein domains are units of function, but domons are not modules of transfer and recombination. Our results demonstrate that LGT can remodel even the most functionally conservative modules within genomes.  相似文献   

15.

Background  

Unigenic evolution is a powerful genetic strategy involving random mutagenesis of a single gene product to delineate functionally important domains of a protein. This method involves selection of variants of the protein which retain function, followed by statistical analysis comparing expected and observed mutation frequencies of each residue. Resultant mutability indices for each residue are averaged across a specified window of codons to identify hypomutable regions of the protein. As originally described, the effect of changes to the length of this averaging window was not fully eludicated. In addition, it was unclear when sufficient functional variants had been examined to conclude that residues conserved in all variants have important functional roles.  相似文献   

16.
Kinases regulate key signaling processes that are increasingly implicated in development and disease. Kinase modulators have become important therapeutic tools and often target catalytic domains that are among the most structurally and functionally conserved regions of these enzymes. Such therapies lose efficacy as mutations conferring resistance arise. Because interactions between distinct and often distant regions of kinases can be critical, we took an unbiased genetic approach to identify sites within the protein kinase A homolog Tpk2 that contribute to its biological activity. Because many of these map outside the conserved core, this approach should be broadly useful in identifying new, more kinase-specific therapeutic targets.  相似文献   

17.
The properties and origin of genetic robustness have recently been investigated in several works that examined microRNA stem-loop structures, and a variety of conclusions have been reached without agreement. Considering that this is a universal phenomenon that is not restricted to miRNAs, we recall the original work on this topic that began from looking at viral RNAs of several types. We provide a link to this work by examining the neutrality of HCV structural elements, performing a detailed bioinformatic analysis using RNA secondary structure predictions across genotypes. This study provides supporting evidence for direct evolution of genetic robustness that is not limited to noncoding RNAs participating in gene regulation, but includes functionally important structural elements of the hepatitis C virus (HCV) that show excess of robustness beyond the intrinsic robustness of their stem-loop structure. These findings further support the adaptive behavior of genetic robustness in functional RNAs of various types that seem to have evolved with selection pressure towards increased robustness.  相似文献   

18.
Key interaction modes of dynamic +TIP networks   总被引:1,自引:0,他引:1  
Dynamic microtubule plus-end tracking protein (+TIP) networks are implicated in all functions of microtubules, but the molecular determinants of their interactions are largely unknown. Here, we have explored key binding modes of +TIPs by analyzing the interactions between selected CAP-Gly, EB-like, and carboxy-terminal EEY/F-COO(-) sequence motifs. X-ray crystallography and biophysical binding studies demonstrate that the beta2-beta3 loop of CAP-Gly domains determines EB-like motif binding specificity. They further show how CAP-Gly domains serve as recognition domains for EEY/F-COO(-) motifs, which represent characteristic and functionally important sequence elements in EB, CLIP-170, and alpha-tubulin. Our findings provide a molecular basis for understanding the modular interaction modes between alpha-tubulin, CLIPs, EB proteins, and the dynactin-dynein motor complex and suggest that multiple low-affinity binding sites in different combinations control dynamic +TIP networks at microtubule ends. They further offer insights into the structural consequences of genetic CAP-Gly domain defects found in severe human disorders.  相似文献   

19.
20.
In this communication, we report an in-depth structure-based analysis of the human CYP1b1 protein carrying disease-causing mutations that are discovered in patients suffering from primary congenital glaucoma (PCG). The "wild-type" and the PCG mutant structures of the human CYP1b1 protein obtained from comparative modeling were subjected to long molecular dynamics simulations with an intention of studying the possible impact of these mutations on the protein structure and hence its function. Analysis of time evolution as well as time averaged values of various structural properties--especially of those of the functionally important regions: the heme binding region, substrate binding region, and substrate access channel--gave some insights into the possible structural characteristics of the disease mutant and the wild-type forms of the protein. In a nutshell, compared to the wild-type the core regions in the mutant structures are associated with subtle but significant changes, and the functionally important regions seem to adopt such structures that are not conducive for the wild-type-like functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号