首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The sarcoplasmic reticulum and glycogen pellet derived from rabbit skeletal muscle and the sarcolemma and sarcoplasmic reticulum from pig skeletal muscle contains NAD:dependent mono ADP-ribosyltransferase activity toward the guanidine analog, P- nitrobenzylidine aminoguanidine. No or little activity could be found in the sarcolemma or sarcoplasmic reticulum derived from canine cardiac muscle. Seventy percent of activity extracted from rabbit skeletal muscle is localized in the sarcoplasmic reticulum. The enzyme has a pH optimum of 7.4, and KM of 0.5 mM and 0.35 mM for NAD and p-nitro benzylidine aminoguanidine, respectively. Inorganic phosphate, KCl, and guanidine derivatives inhibit the reaction. Incubation of the sarcoplasmic reticulum or glycogen pellet with (adenylate-32P) NAD or [adenosine-14C(U)]-labeled NAD results in the incorporation of radioactivity into proteins. A large number of proteins are labeled in the sarcoplasmic reticulum fraction. The major labeled band in the glycogen pellet corresponds to a protein of molecular weight of 83 K.  相似文献   

2.
A series of proteins are covalently labeled when human lymphocytes are incubated with [32P]NAD+. The majority of this labeling is effectively inhibited when the lymphocytes are coincubated with 3-aminobenzamide, a potent inhibitor of poly(ADP-ribose) polymerase. However, labeling of a 72 000 molecular weight protein was resistant to the inhibitory effect of 3-aminobenzamide. Labeling of this protein from [32P]NAD+ was shown to be Mg2+-dependent. The 72 000 molecular weight protein could also be labeled on incubation with [alpha-32P]ATP, [gamma-32P]ATP and [32P]orthophosphate, but not from [3H]NAD+ or [14C]NAD+. In the present study, we show that the 72 000 molecular weight protein is not ADP-ribosylated but rather, phosphorylated on incubation with [32P]NAD+. This phosphorylation appears to occur via an Mg2+-dependent conversion of NAD+ to AMP with the eventual utilization of the alpha-phosphate for phosphorylation of the 72 000 molecular weight protein.  相似文献   

3.
Increased [3H]palmitate incorporation into specific cellular proteins has been reported to occur in Chinese hamster ovary (Wellner, R. B., Ray, B., Ghosh, P. C., and Wu, H. C. (1984) J. Biol. Chem. 259, 12788-12793) and yeast (Wen, D., and Schlesinger, M. J. (1984) Mol. Cell. Biol. 4, 688-694) mutant cells. In this paper we report studies concerning the relationship between N-linked oligosaccharide structure and [3H]palmitate incorporation into proteins of Chinese hamster ovary (CHO) cells. We have compared the incorporation of [3H]palmitate into proteins of wild-type and four different mutant CHO cell lines defective in various steps of N-linked protein glycosylation. Sodium dodecyl sulfate-gel electrophoretic analysis showed that three of the mutants exhibited increased [3H]palmitate incorporation into several CHO cellular proteins (approximately 30,000-38,000 molecular weight) as compared to the wild-type cells. One of the affected mutants which accumulates the Man5Gn2Asn intermediate structure was examined in detail. In agreement with earlier reports, virtually all of the [3H] palmitate-labeled proteins of both wild-type and mutant cell lines are membrane-bound. Pretreatment of the mutant cell line with tunicamycin blocked the increased [3H]palmitate incorporation into the two specific proteins (both of approximately 30,000 molecular weight) observed in untreated cells; the decreased incorporation of [3H]palmitate into the 30,000 molecular weight species was accompanied by a concomitant increase in the incorporation of [3H]palmitate into two proteins of approximately 20,000 molecular weight. Pretreatment of wild-type cells with tunicamycin also caused increased [3H]palmitate incorporation into the 20,000 molecular weight species. Endoglycosidase H treatment of [3H]palmitate-labeled extracts from the mutant cell line resulted in the disappearance of the heavily labeled 30,000 molecular weight species and the appearance of intensely labeled 20,000 molecular weight species. Pretreatment of the mutant cell line with either castanospermine or deoxynojirimycin reduced the [3H]palmitate incorporation in to the 30,000 molecular weight species increased in untreated cells, but did not cause increased [3H]palmitate incorporation into the 20,000 molecular weight species. Our results indicate that perturbation of N-linked oligosaccharide structure results in altered incorporation of [3H]palmitate into specific proteins in CHO cells.  相似文献   

4.
Incubation of purified rat brain tubulin with cholera toxin and radiolabeled [32P] or [8-3H]NAD results in the labeling of both alpha and beta subunits as revealed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Treatment of these protein bands with snake venom phosphodiesterase resulted in quantitative release of labeled 5'-AMP, respectively labeled with the corresponding isotope. Two-dimensional separation by isoelectric focusing and SDS-PAGE of labeled and native tubulin revealed that labeling occurs at least in four different isotubulins. The isoelectric point of the labeled isotubulins was slightly lower than that of native purified tubulin. This shift in mobility is probably due to additional negative charges involved with the incorporation of ADP-ribosyl residues into the tubulin subunits. SDS-PAGE of peptides derived from [32P]ADP-ribosylated alpha and beta tubulin subunits by Staphylococcus aureus protease cleavage showed a peptide pattern identical with that of native tubulin. Microtubule-associated proteins (MAP1 and MAP2) of high molecular weight were also shown to undergo ADP-ribosylation. Incubation of permeated rat neuroblastoma cells in the presence of [32P]NAD and cholera toxin results in the labeling of only a few cell proteins of which tubulin is one of the major substrates.  相似文献   

5.
Primary cultures of embryonic chick skeletal myogenic cells were used as an experimental model to examine the possible role of mono(ADP-ribosyl)ation reactions in myogenic differentiation. Initial studies demonstrated arginine-specific mono(ADP-ribosyl)transferase activity in the myogenic cell cultures. We then examined the effect of a novel inhibitor of cellular arginine-specific mono(ADP-ribosyl)transferases, meta-iodobenzylguanidine (MIBG), on differentiation of cultured embryonic chick skeletal myoblasts. MIBG reversibly inhibited both proliferation and differentiation of embryonic chick myoblasts grown in culture. Micromolar (15-60 microM) concentrations of MIBG blocked myoblast fusion, the differentiation-specific increase in creatine phosphokinase activity, and both DNA and protein accumulation in myogenic cell cultures. Meta-iodobenzylamine, an analog of MIBG missing the guanidine group, had no effect. Low concentrations of methylglyoxal bis-guanylhydrazone, a substrate for cholera toxin with a higher Km than MIBG, also had no effect, but higher concentrations reversibly inhibited fusion. These findings suggest a possible role for mono(ADP-ribosyl)ation reactions in myogenesis. In addition, the total arginine-specific mono(ADP-ribosyl)transferase activity increased with differentiation in the myogenic cell cultures, and this increase was also blocked by MIBG treatment. Because high levels of activity were found in the membrane fraction derived from later, myotube cultures, the membrane fraction from 96-h cultures was incubated with [32P]NAD+ and subjected to electrophoresis and autoradiography. Three proteins, migrating at 21, 20, and 17 kDa, that were ADP-ribosylated in the absence, but not the presence, of MIBG were identified. These proteins may be endogenous substrates for this enzyme.  相似文献   

6.
Incubation of Complex I (NADH-CoQ reductase) of ox heart mitochondria at 4 degrees C in the presence of 0.5 M NaClO4 followed by ammonium sulfate fractionation of the solubilized proteins results in the isolation of a resolved preparation still capable of catalyzing NADH-NAD+ transhydrogenation but having only low levels of NADH dehydrogenase activity. A number of NAD(H) analogues, including the photoaffinity probes, arylazido-beta-alanyl NAD+ (A3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]NAD+ and arylazido-beta-alanyl AcPyAD+ (A3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]AcPyAD+ can be utilized as substrates for transhydrogenation in this preparation. A further incubation (10 min) of the resolved NADH-NAD+ transhydrogenase in the presence of 0.5 M NaClO4, but now at 30 degrees C, results in the complete loss of this transhydrogenase activity. Photoaffinity labeling experiments utilizing arylazido-[3-3H]beta-alanyl NAD+ and arylazido-[3-3H]beta-alanyl AcPyAD+ with the resolved NADH-NAD+ transhydrogenase preparation prior to and following NaClO4 (30 degrees C) treatment indicates that the 42,000 molecular weight component of Complex I is the pyridine nucleotide binding site responsible for the major NADH-NAD+ (DD) transhydrogenase activity of Complex I.  相似文献   

7.
In an attempt to identify proteins involved in the secretory response, bovine chromaffin cells were modified with N-ethylmaleimide (NEM). NEM concentrations less than 30 microM enhanced norepinephrine secretion evoked by nicotine or by K+ depolarization and increased Ca(2+)-dependent secretion from digitonin-permeabilized cells. Higher concentrations of NEM inhibited secretion. The protein modified by NEM which was responsible for the enhancement of secretory activity appeared to rapidly diffuse out of the digitonin-permeabilized cells. When proteins which diffuse from control digitonin-permeabilized cells were incubated with pertussis toxin and [32P]NAD, several proteins were ADP-ribosylated. However, when proteins from cells preincubated with 30 microM NEM were incubated with pertussis toxin and [32P]NAD, these GTP-binding proteins (G-proteins) were not ADP-ribosylated, which suggests that they were modified in the cell by NEM. Stimulation of norepinephrine secretion by NEM was not additive with that caused by pertussis toxin. Modification of chromaffin cells with pertussis toxin or with 30 microM NEM caused a 40-50% decrease in the amount of cytoskeletal F-actin. This decrease in cytoskeletal F-actin may account for the increase in secretory activity.  相似文献   

8.
J C Osborne  S J Stanley  J Moss 《Biochemistry》1985,24(19):5235-5240
A subunit of choleragen and an erythrocyte ADP-ribosyltransferase catalyze the transfer of ADP-ribose from NAD to proteins and low molecular weight guanidino compounds such as arginine. These enzymes also catalyze the hydrolysis of NAD to nicotinamide and ADP-ribose. The kinetic mechanism for both transferases was investigated in the presence and absence of the product inhibitor nicotinamide by using agmatine as the acceptor molecule. To obtain accurate estimates of kinetic parameters, the transferase and glycohydrolase reactions were monitored simultaneously by using [adenine-2,8-3H]NAD and [carbonyl-14C]NAD as tracer compounds. Under optimal conditions for the transferase assay, NAD hydrolysis occurred at less than 5% of the Vmax for ADP-ribosylation; at subsaturating agmatine concentrations, the ratio of NAD hydrolysis to ADP-ribosylation was significantly higher. Binding of either NAD or agmatine resulted in a greater than 70% decrease in affinity for the second substrate. All data were consistent with a rapid equilibrium random sequential mechanism for both enzymes.  相似文献   

9.
Acceptors of poly(ADP-ribosylation) were identified and compared between inducer-treated and untreated Friend erythroleukemia cells. When permeabilized Friend cells were pulse labeled with 0.6 μM [32P]NAD for 1 min and labeled proteins analyzed by SDS-polyacrylamide gel electrophoresis, nucleosome core histones were found to be the primary acceptors, with an additional minor radioactive peak at a position corresponding to Mr = 170 000. Friend cells induced to differentiate by DMSO treatment showed a similar distribution of radioactivity, but with a 60% reduction in the overall level of poly(ADP-ribosylation) under identical labeling conditions. When isolated nuclei were pulse labeled with 0.6 μM [32P]NAD, radioactive peaks were not restricted mainly at the positions of core histones but widely dispersed in the area from 10 to 50 kDa with another peak at 170 kDa. Increase of NAD concentration resulted in the overall shift of peaks to higher molecular weight positions. When pulse-labeled nuclei or permeable cells were chased with 1 mM NAD, radioactive peaks migrated to positions of very high molecular weight (>Mr = 180 000). Remarkable suppression of poly(ADP-ribose) synthesis was observed when DMSO, hexamethylene bisacetamide, butyric acid, or hemin were used as the inducers.  相似文献   

10.
An ADP-ribosylarginine hydrolase, which catalyzes the degradation of ADP-ribosyl[14C]arginine to ADP-ribose plus arginine, was separated by ion exchange, hydrophobic, and gel permation chromatography from NAD:arginine ADP-ribosyltransferases, which are responsible for the stereospecific formation of alpha-ADP-ribosylarginine. As determined by NMR, the specific substrate for the hydrolase was alpha-ADP-ribosylarginine, the product of the transferase reaction. The ADP-ribose moiety was critical for substrate recognition; (phosphoribosyl) [14C]arginine and ribosyl[14C]arginine were poor substrates and did not significantly inhibit ADP-ribosyl[14C]arginine degradation. In contrast, ADP-ribose was a potent inhibitor of the hydrolase and significantly more active than ADP greater than AMP greater than adenosine. In addition to ADP-ribosyl[14C]arginine, both ADP-ribosyl[14C]guanidine and (2'-phospho-ADP-ribosyl)[14C]arginine were also substrates; at pH greater than 7, ADP-ribosyl[14C]guanidine was degraded more readily than the [14C]arginine derivative. Neither arginine, guanidine, nor agmatine, an arginine analogue, was an effective hydrolase inhibitor. Thus, it appears that the ADP-ribosyl moiety but not the arginine group is critical for substrate recognition. Although the hydrolase requires thiol for activity, dithiothreitol accelerated loss of activity during incubation at 37 degrees C. Stability was enhanced by Mg2+, which is also necessary for optimal enzymatic activity. The findings in this paper are consistent with the conclusion that different enzymes catalyze ADP-ribosylarginine synthesis and degradation. Furthermore, since the hydrolase and transferases possess a compatible stereospecificity and substrate specificity, it would appear that the two enzymatic activities may serve as opposing arms in an ADP-ribosylation cycle.  相似文献   

11.
Erythrocytes from cancer patients exhibited up to fivefold higher NAD glycohydrolase activities than control erythrocytes from normal subjects and also similarly increased [14C] ADP-ribose uptake values. When [adenosine-14C] NAD was used instead of free [14C] ADP-ribose, the uptake was dependent on ecto-NAD glycohydrolase activity. This was reflected in the inhibition of ADP-ribose uptake from [adenosine-14C] NAD by Cibacron Blue. ADP-ribose uptake in erythrocytes appeared to be complex: upon incubation with free [14C] ADP-ribose, the radiolabel associated with erythrocytes was located in nearly equal parts in cytoplasm and plasma membrane. Part of [14C] ADP-ribose binding to the membrane was covalent, as indicated by its resistance to trichloroacetic acid-treatment. A preincubation with unlabeled ADP-ribose depressed subsequent erythrocyte NAD glycohydrolase activity and binding of [14C] ADP-ribose to erythrocyte membrane; but it failed to inhibit the transfer of labeled ADP-ribose to erythrocyte cytoplasm. On the other hand, incubation with [adenosine-14C] NAD did not result in a similar covalent binding of radiolabel to erythrocyte membrane. In line with this finding, a preincubation with unlabeled NAD was not inhibitory on subsequent NAD glycohydrolase reaction and ADP-ribose binding. ADP-ribose binding and NAD glycohydrolase activities were found also in solubilized erythrocyte membrane proteins and, after size fractionation, mainly in a protein fraction of around 45kDa-molecular weight.  相似文献   

12.
Human bone was sequentially extracted with 4 M guanidine hydrochloride to remove nonmineralized tissue components, 0.5 M EDTA to dissolve the mineral phase, 4 M guanidine hydrochloride to remove matrix associated proteins and finally a combination of 4 M guanidine hydrochloride and 0.5 M EDTA to remove residual proteins. The extracts were examined for the presence of factors that were able to stimulate the incorporation of [3H] thymidine into DNA and [14C] leucine into protein in a cloned rat bone cell culture system. The majority of the bioactivity was found in the first guanidine hydrochloride extract (59 +/- 12%) while the second guandine hydrochloride extract contained 27 +/- 8%. In addition to several known growth factors already reported to be present in bone (transforming growth factor-beta and insulin-like growth factor-I) insulin-like growth factor-II was identified by its chromatographic, electrophoretic and immunological properties as well as by N-terminal sequence data. The insulin-like growth factor-II levels (802 +/- 112 micrograms/kg wet weight bone) were 10 fold higher than that found for insulin-like growth factor-I (84 +/- 23 micrograms/kg wet weight).  相似文献   

13.
Mouse pituitary tumor cells (AtT-20/D-16v) were incubated in medium containing [3H] glucosamine or [3H] mannose. By analyzing immunoprecipitates of cell extracts and culture medium it was shown that [3H] glucosamine and [3H] mannose were incorporated into all three high molecular weight forms of ACTH; label was not incorporated into Mr=4,500 ACTH (which is thought to be similar to the 39 amino acid polypeptide form of ACTH, alpha(1-39)). Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis the apparent molecular weights of these glycoprotein forms of ACTH were 31,000, 23,000, and 13,000. Gel filtration in 6 M guanidine HCl indicated that the molecular weights of these forms of ACTH were substantially lower; sodium dodecyl sulfate-polyacrylamide gel electrophoresis has often been found to overestimate the molecular weight of glycoproteins. A significant fraction of the high molecular weight ACTH in tumor cell extracts binds to columns of concanavalin A-agarose and can be eluted with 0.2 M alpha-methyl-D-mannopyranoside; porcine alpha(1-39) does not bind to concanavalin A-agarose. High molecular weight glycoprotein ACTH can be detected in extracts of mouse and bovine pituitary by using concavalin A affinity chromatography.  相似文献   

14.
ADP-ribosyl cyclase activities in cultured rat astrocytes were examined by using TLC for separation of enzymatic products. A relatively high rate of [3H]cyclic ADP-ribose production converted from [3H]NAD+ by ADP-ribosyl cyclase (2.015+/-0.554 nmol/min/mg of protein) was detected in the crude membrane fraction of astrocytes, which contained approximately 50% of the total cyclase activity in astrocytes. The formation rate of [3H]ADP-ribose from cyclic ADP-ribose by cyclic ADP-ribose hydrolase and/or from NAD+ by NAD glycohydrolase was low and enriched in the cytosolic fraction. Although NAD+ in the extracellular medium was metabolized to cyclic ADP-ribose by incubating cultures of intact astrocytes, the presence of Triton X-100 in the medium for permeabilizing cells increased cyclic ADP-ribose production three times as much. Isoproterenol and GTP increased [3H]cyclic ADP-ribose formation in crude membrane-associated cyclase activity. This isoproterenol-induced stimulation of membrane-associated ADP-ribosyl cyclase activity was confirmed by cyclic GDP-ribose formation fluorometrically. This stimulatory action was blocked by prior treatment of cells with cholera toxin but not with pertussis toxin. These results suggest that ADP-ribosyl cyclase in astrocytes has both extracellular and intracellular actions and that signals of beta-adrenergic stimulation are transduced to membrane-bound ADP-ribosyl cyclase via G proteins within cell surface membranes of astrocytes.  相似文献   

15.
Lymphocytes express a number of NAD-metabolizing ectoenzymes, including mono(ADP-ribosyl)transferases (ART) and ADP ribosylcyclases. These enzymes may regulate lymphocyte functions following the release of NAD in injured or inflammatory tissues We report here that extracellular NAD induces apoptosis in BALB/c splenic T cells with an IC(50) of 3-5 microM. Annexin V staining of cells was observed already 10 min after treatment with NAD in the absence of any additional signal. Removal of GPI-anchored cell surface proteins by phosphatidylinositol-specific phospholipase C treatment rendered cells resistant to NAD-mediated apoptosis. RT-PCR analyses revealed that resting BALB/c T cells expressed the genes for GPI-anchored ART2.1 and ART2.2 but not ART1. ART2-specific antisera blocked radiolabeling of cell surface proteins with both [(32)P]NAD and NAD-mediated apoptosis. Further analyses revealed that natural knockout mice for Art2.a (C57BL/6) or Art2.b (NZW) were resistant to NAD-mediated apoptosis. Labeling with [(32)P]NAD revealed strong cell surface ART activity on T cells of C57BL/6 and little if any activity on cells of NZW mice. T cells of (C57BL/6 x NZW)F(1) animals showed strong cell surface ART activity and were very sensitive to NAD-induced apoptosis. As in BALB/c T cells, ART2-specific antisera blocked cell surface ART activity and apoptosis in (C57BL/6 x NZW)F(1) T cells. The fact that T cells of F(1) animals are sensitive to rapid NAD-induced apoptosis suggests that this effect requires the complementation of (at least) two genetic components. We propose that one of these is cell surface ART2.2 activity (defective in the NZW parent), the other a downstream effector of ADP-ribosylation (defective in the C57BL/6 parent).  相似文献   

16.
Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of [14C]NAD+ and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the alpha and beta chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight mirotubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated [14C]ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD+ resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.  相似文献   

17.
We tested various methods of assaying the ADP-ribosyltransferase activity of cholera toxin using artificial acceptors of the ADP-ribosyl group. Any of several proteins or poly(L-arginine) could be used with [adenine-14C]NAD+ as ADP-ribosyl donor, but this method was not ideal because of the heterogeneity of potential acceptor groups and the necessity of using costly labeled NAD+. We, therefore, developed an alternative assay using a synthetic low molecular weight acceptor, 125I-N-guanyltyramine (125I-GT). 125I-GT was specifically ADP-ribosylated by thiol-treated cholera toxin or its A1 peptide in the presence of beta-NAD. ADP-ribosyl-125I-GT was quantified after separation from unreacted 125I-GT by batch absorption of the latter to cation exchange resins. Analysis of the kinetics of ADP-ribosylation of 125I-GT indicated that the reaction proceeds by a sequential rather than a ping-pong mechanism. The Km values for NAD+ and 125I-GT were 3.6 mM and 44 microM, respectively. L-Arginine was a competitive inhibitor of 125I-GT (KI = 75 mM), but was at least 1000-fold less active than 125I-GT as an ADP-ribose acceptor.  相似文献   

18.
Sir2 is a NAD(+)-dependent histone deacetylase that controls gene silencing, cell cycle, DNA damage repair, and life span. Prompted by the observation that the [NAD(+)]/[NADH] ratio is subjected to dynamic fluctuations in skeletal muscle, we have tested whether Sir2 regulates muscle gene expression and differentiation. Sir2 forms a complex with the acetyltransferase PCAF and MyoD and, when overexpressed, retards muscle differentiation. Conversely, cells with decreased Sir2 differentiate prematurely. To inhibit myogenesis, Sir2 requires its NAD(+)-dependent deacetylase activity. The [NAD(+)]/[NADH] ratio decreases as muscle cells differentiate, while an increased [NAD(+)]/[NADH] ratio inhibits muscle gene expression. Cells with reduced Sir2 levels are less sensitive to the inhibition imposed by an elevated [NAD(+)]/[NADH] ratio. These results indicate that Sir2 regulates muscle gene expression and differentiation by possibly functioning as a redox sensor. In response to exercise, food intake, and starvation, Sir2 may sense modifications of the redox state and promptly modulate gene expression.  相似文献   

19.
Using Walker 256 breast carcinoma cell lines either with or without acquired resistance to alkylating agents, the structural framework proteins of the nucleus, the nuclear matrix proteins, were found to be effective acceptors for poly(ADP-ribose). Incubation of isolated nuclei with nicotinamide adenine [32P] dinucleotide ([32P] NAD), followed by the isolation of the nuclear matrix, demonstrated that two polypeptides of approximate molecular weight (Mr) 105 000 and 116 000 were extensively poly(ADP-ribosylated). By an in vitro [32P] NAD assay, the nuclear matrix fraction was found to maintain approx. 15% of the total nuclear matrix activity of poly(ADP-ribose) polymerase. Confirmation that the trichloroacetic acid (TCA) precipitable material represented ADP-ribose units was achieved by enzymatic digestion of the nuclear matrix preparation with snake venom phosphodiesterase (SVP). Within 15 min, greater than 85% of the 32P label was digested by SVP and the final digestion products were found to be phosphoribosyl-AMP (PR-AMP) and adenosine 5'-monophosphate (5'-AMP) by thin layer chromatographic analysis. The average polymer chain length was estimated to be 6-7 ADP-ribose units. Because poly(ADP-ribose) polymerase has a putative role in DNA repair, a comparison of the nuclear matrix fractions from Walker resistant and sensitive tumor cell lines was made. In both cell lines, the quantitative and qualitative patterns of the nuclear matrix associated poly(ADP-ribosylation) were similar.  相似文献   

20.
Evidence for a pro-calcitonin   总被引:3,自引:0,他引:3  
The biosynthesis of calcitonin was studied using radioimmunochemical methods and suspensions of calcitonin-producing cells derived from trout ultimobranchial glands. [14C]leucine was incorporated into cell proteins in a linear fashion for up to 36 hrs. Acid-extracted cellular radioactivity could be precipitated by trichloroacetic acid and calcitonin antiserum. Chromatography of the cell extracts revealed two distinct peaks of radio-immunoassayable and immunoprecipitable calcitonin activity. One peak coeluted with radioiodinated calcitonin, the other as a higher molecular weight species. The relative incorporation of [14C]leucine into the higher and lower molecular weight peaks during “pulse-chase” experiments was consistent with a precursor-product relationship between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号