首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the relationship between rate of respiration and membrane potential in isolated mitochondria titrated with malonate (to inhibit the electron transport chain) or with uncoupler (to increase the proton conductance of the inner membrane). We used the flux control summation and connectivity theorems of metabolic control theory to calculate the control over non-phosphorylating respiration exerted by the respiratory chain (and associated reactions) and by the leak of protons across the inner membrane. At 37 degrees C the flux control coefficient of the leak over respiration was 0.66; the flux control coefficient of the chain over respiration was 0.34. At 25 degrees C the values were 0.75 and 0.25 respectively. We argue that the basis for previous conclusions that all the control is exerted by the proton leak under similar conditions is invalid.  相似文献   

2.
The rate of respiration of isolated mitochondria was set at different values by addition of either oligomycin or an ADP-regenerating system (glucose and different amounts of hexokinase). We measured the relationship between respiration rate and membrane potential as respiration was titrated by the addition of malonate under each condition. We used the flux control summation and connectivity theorems and the branching theorem of metabolic control theory to calculate the control over respiration rate exerted by the respiratory chain (and associated reactions), phosphorylating system (and associated reactions) and proton leak at each respiration rate. The analysis also yielded the flux control coefficients of these three reactions over phosphorylation rate and proton leak rate and their concentration control coefficients over protonmotive force. We found that respiration rate was controlled largely by the proton leak under non-phosphorylating conditions, by the phosphorylating system at intermediate rates and by both the phosphorylating system and the respiratory chain in state 3. The rate of phosphorylation was controlled largely by the phosphorylating system itself in state 4 and at intermediate rates, while state 3 control was shared between the phosphorylating system and the respiratory chain; the proton leak had insignificant control. In all states the phosphorylating system had large negative control over the proton leak; the chain and the proton leak both had large positive control coefficients. The protonmotive force was controlled by the chain and by the phosphorylating system; the proton leak had little control.  相似文献   

3.
The rate of microbial respiration can be described by a rate law that gives the respiration rate as the product of a rate constant, biomass concentration, and three terms: one describing the kinetics of the electron-donating reaction, one for the kinetics of the electron-accepting reaction, and a thermodynamic term accounting for the energy available in the microbe's environment. The rate law, derived on the basis of chemiosmotic theory and nonlinear thermodynamics, is unique in that it accounts for both forward and reverse fluxes through the electron transport chain. Our analysis demonstrates how a microbe's respiration rate depends on the thermodynamic driving force, i.e., the net difference between the energy available from the environment and energy conserved as ATP. The rate laws commonly applied in microbiology, such as the Monod equation, are specific simplifications of the general law presented. The new rate law is significant because it affords the possibility of extrapolating in a rigorous manner from laboratory experiment to a broad range of natural conditions, including microbial growth where only limited energy is available. The rate law also provides a new explanation of threshold phenomena, which may reflect a thermodynamic equilibrium where the energy released by electron transfer balances that conserved by ADP phosphorylation.  相似文献   

4.
The rate of microbial respiration can be described by a rate law that gives the respiration rate as the product of a rate constant, biomass concentration, and three terms: one describing the kinetics of the electron-donating reaction, one for the kinetics of the electron-accepting reaction, and a thermodynamic term accounting for the energy available in the microbe's environment. The rate law, derived on the basis of chemiosmotic theory and nonlinear thermodynamics, is unique in that it accounts for both forward and reverse fluxes through the electron transport chain. Our analysis demonstrates how a microbe's respiration rate depends on the thermodynamic driving force, i.e., the net difference between the energy available from the environment and energy conserved as ATP. The rate laws commonly applied in microbiology, such as the Monod equation, are specific simplifications of the general law presented. The new rate law is significant because it affords the possibility of extrapolating in a rigorous manner from laboratory experiment to a broad range of natural conditions, including microbial growth where only limited energy is available. The rate law also provides a new explanation of threshold phenomena, which may reflect a thermodynamic equilibrium where the energy released by electron transfer balances that conserved by ADP phosphorylation.  相似文献   

5.
It was shown that the proton conductivity of Escherichia coli membranes depends on pH and other conditions of bacterial growth. It is considerably lower in cells fermenting glucose and accomplishing the nitrate-nitrite respiration compared with cells accomplishing the oxygen respiration. Proton conductivity increases substantially with decreasing pH of medium. It was found that proton conductivity is related to the redox and membrane potentials of cells. The energy-dependent flux of protons from cells and the ATPase activity of membrane vesicles considerably vary depending on whether bacteria are grown under aerobic or anaerobic conditions. The H+ flux from cells fermenting glucose (pH 7.5) was 1.7 times greater than the H+ flux from cells that accomplish the nitrate-nitrite and oxygen respiration. The N,N'-dicyclohexylcarbodiimide (DCCD)-sensitive ATPase activity increased 2.5 times as K+ concentration increased to 100 mM (including residual K+ in potassium-free medium). The DCCD-sensitive ATPase activity considerably decreased with decreasing pH of medium, whereas the ATPase activity that was not suppressed by DCCD was stimulated. These results can be used for establishing the relationship between membrane proton conductivity and the energy-dependent H+ flux and ATPase activity.  相似文献   

6.
We investigated the kinetics of the mitochondrial respiratory chain, proton leak, and phosphorylating subsystems of liver mitochondria from mannoheptulose-treated and control rats. Mannoheptulose treatment raises glucagon and lowers insulin; it had no effect on the kinetics of the mitochondrial proton leak or phosphorylating subsystems, but the respiratory chain from succinate to oxygen was stimulated. Previous attempts to detect any stimulation of cytochrome c oxidase by glucagon are shown by flux control analysis to have used inappropriate assay conditions. To investigate the site of stimulation of the respiratory chain we measured the relationship between the thermodynamic driving force and respiration rate for the span succinate to coenzyme Q, the cytochrome bc1 complex and cytochrome c oxidase. Hormone treatment of rats altered the kinetics of electron transport from succinate to coenzyme Q in subsequently isolated mitochondria and activated succinate dehydrogenase. The kinetics of electron transport through the cytochrome bc1 complex were not affected. Effects on cytochrome c oxidase were small or nonexistent.  相似文献   

7.
8.
The contribution of molecular slippage of proton pumps, of proton leak and of coupling heterogeneity of mitochondrial population to the well-known non-linear interrelationship between resting state respiration and the protonmotive force is discussed in view of the following experimental findings. (1) After blocking mitochondrial respiration with cyanide, the rate of dissipation of the membrane potential is non-linearly dependent on the actual membrane potential, similarly to the resting state respiration in mitochondria titrated with small amounts of an inhibitor. In contrast, delta pH dissipates proportionally to its actual value. (2) The rate of electron flow from succinate to ferricyanide depends upon the protonmotive force, similarly to the flow from succinate to oxygen. This strongly suggests that the H+/e- stoichiometry in complexes III and IV of the respiratory chain is constant. (3) Mitochondria 'in situ', in permeabilized Ehrlich ascites cells, exhibit the same non-linear flux/force relationship as isolated mitochondria. These results strongly suggest that the non-ohmic characteristics of the inner mitochondrial membrane, with respect to protons driven by the membrane potential but not by the concentration gradient, is the main factor responsible for the nonlinear flux/force relationship in resting state mitochondria.  相似文献   

9.
The distribution of prokaryotic metabolism between maintenance and growth activities has a profound impact on the transformation of carbon substrates to either biomass or CO2. Knowledge of key factors influencing prokaryotic maintenance respiration is, however, highly limited. This mesocosm study validated the significance of prokaryotic maintenance respiration by mimicking temperature and nutrients within levels representative of winter and summer conditions. A global range of growth efficiencies (0.05–0.57) and specific growth rates (0.06–2.7 d−1) were obtained. The field pattern of cell-specific respiration versus specific growth rate and the global relationship between growth efficiency and growth rate were reproduced. Maintenance respiration accounted for 75% and 15% of prokaryotic respiration corresponding to winter and summer conditions, respectively. Temperature and nutrients showed independent positive effects for all prokaryotic variables except abundance and cell-specific respiration. All treatments resulted in different taxonomic diversity, with specific populations of amplicon sequence variants associated with either maintenance or growth conditions. These results validate a significant relationship between specific growth and respiration rate under productive conditions and show that elevated prokaryotic maintenance respiration can occur under cold and oligotrophic conditions. The experimental design provides a tool for further study of prokaryotic energy metabolism under realistic conditions at the mesocosm scale.  相似文献   

10.
The proton leak across the mitochondrial inner membrane   总被引:10,自引:0,他引:10  
The proton conductance of the mitochondrial inner membrane increases at high protonmotive force in isolated mitochondria and in mitochondria in situ in rat hepatocytes. Quantitative analysis of its importance shows that about 20-30% of the oxygen consumption by resting hepatocytes is used to drive a heat-producing cycle of proton pumping by the respiratory chain and proton leak back to the matrix. The flux control coefficient of the proton leak pathway over respiration rate varies between 0.9 and zero in mitochondria depending on the rate of respiration, and has a value of about 0.2 in hepatocytes. Changes in the proton leak pathway in situ will therefore change respiration rate. Mitochondria isolated from hypothyroid animals have decreased proton leak pathway, causing slower state 4 respiration rates. Hepatocytes from hypothyroid rats also have decreased proton leak pathway, and this accounts for about 30% of the decrease in hepatocyte respiration rate. Mitochondrial proton leak may be a significant contributor to standard metabolic rate in vivo.  相似文献   

11.
Non-ohmic proton conductance of mitochondria and liposomes   总被引:10,自引:0,他引:10  
Direct measurements of the proton/hydroxyl ion flux across rat liver mitochondria and liposome membranes are reported. H+/OH- fluxes driven by membrane potential (delta psi) showed nonlinear dependence on delta psi both in mitochondria and in liposomes whereas delta pH-driven H+/OH- flux shows linear dependence on delta pH in liposomes. In the presence of low concentrations of a protonophore the H+/OH- flux was linearly dependent on delta psi and showed complex dependence on delta pH. The nonlinearity of H+/OH- permeability without protonophore is described by an integrated Nernst- Plank equation with trapezoidal energy barrier. Permeability coefficients depended on the driving force but were in the range 10(-3) cm/s for mitochondria and 10(-4)-10(-6) cm/s for liposomes. The nonlinear dependence of H+/OH- flux on delta psi explains the nonlinear dependence of electrochemical proton gradient on the rate of electron transport in energy coupling systems.  相似文献   

12.
The transmembrane electrical potential (deltaphi), the proton flux (H+), the rate of electron transport (e), the pH gradient (deltapH) and the rate of phosphorylation (ATP) were measured in chloroplasts of spinach. Photosynthesis was excited periodically with flashes of variable frequencies and intensities. A new method is described for determining the rate of electron transport and proton flux. Under conditions where the rate of electron transport and proton flux are not pH controlled the following correlations were found in the range 50 mV less than or equal to deltaphi less than or equal to 125 mV and 1.8 less than or equal to deltapH less than or equal to 2.7: (1) The pH gradient, deltapH, increases with H+ independently of Phout between 7-9. (2) The rate of phosphorylation, ATP, depends exponentially on deltapH (at constant deltaphi) and is independent of pHout between 7-9. (3) The rate of phosphorylation, ATP, depends also on deltaphi (at constant deltapH and at constant proton flux H+). (4) The proton flux via the ATPase pathway, Hp+, depends non-linearly on the ratio of the proton concentrations: Hp+ approximately (Hin+/Hout+)b, (b=2.3--2.6). The proton flux via the basal pathway, Hb+, depends linearly on the ratio of the proton concentrations: Hb+ approximately (Hin/Hout). (5) The ratio deltaH+/ATP (e/ATP, i.e. the ratio of the total proton flux, Hp+ + Hb+, and the rate of ATP formation, ATP, depends strongly on deltaphi and on deltapH. The ratio is deltaH+/ATP approximately 3 (e/ATP approximately 1.5) at deltapH 2.7 and deltaphi = 125 mV. (6) It is supposed that the reason for the dependence of deltaH+/ATP on deltaphi anddeltapH is the different functional dependence of the basal proton flux Hb+ and the phosphorylating proton flux Hp+ on deltapH and deltaphi. The calculation of deltaH+/ATP on the basis of this assumption is in fair agreement with the experimental values. Also the "threshold" effects can be explained in this way. (7) The ratio of deltaHp+/ATP, i.e. the ratio of the phosphorylating proton flux Hp+ and ATP, is deltaHp+/ATP APPROXIMATELY 2.4.  相似文献   

13.
We probed the role of the polyunsaturated fatty acids on the dynamic and functional properties of mitochondrial membranes using the fad2 mutant of Arabidopsis thaliana, deficient in omega-6-oleate desaturase. In mitochondria of this mutant, the oleic acid content exceeded 70% of the total fatty acids, and the lipid/protein ratio was greatly enhanced. As a consequence, local microviscosity, probed by anthroyloxy fatty acid derivatives, was increased by 30%, whereas the lipid lateral diffusion, assayed using 1-pyrenedodecanoic acid, was approximately 4 times increased. Functional parameters such as oxygen consumption rate under phosphorylating and nonphosphorylating conditions and proton permeability of the inner mitochondrial membrane were significantly reduced in fad2 mitochondrial membranes, while the thermal dependence of the respiration was enhanced. Moreover, metabolic control analysis of the respiration clearly showed an enhancement of the control exerted by the membrane proton leaks. Our data suggest that the loss of omega-6-oleate desaturase activity in Arabidopsis cells induced an enhancement of both microviscosity and lipid/protein ratio of mitochondrial membranes, which in turn were responsible for the change in lateral mobility of lipids and for bioenergetic parameter modifications.  相似文献   

14.
The object of this work was to measure the effective proton conductance of the plasma membrane ofMicrococcus denitrificans under various conditions and to investigate possible connections between respiration and proton translocation.
  1. Pulsed acid-base titrations of suspensions ofM. denitrificans in a medium containing the permeant thiocyanate ion, or when K+ ion permeability was induced by valinomycin in a KCl medium, showed that the normal effective proton conductance of the membrane system was less than 1 μmho/cm2.
  2. A pH-overshoot artefact was suppressed by adding carbonic anhydrase.
  3. The effective proton conductance was increased by the uncoupler FCCP in the same concentration range as was required to stimulate respiration. Concentrations of FCCP above 1·5 μM inhibited respiration after an initial stimulation.
  4. The effective proton conductance in presence of 2 μM FCCP was at least 17 μmho/cm2.
  5. The quantitative relationships between the respiratory rate, the stoichiometry of respiration-driven proton translocation, and the effective proton conductance of the membrane of the cells are compatible with the suggestion that stimulation of respiration by FCCP is due to a release of back-pressure exerted by a protonmotive potential on the respiratory chain system in the membrane. Only one amongst other possible explanations of the stimulation of respiration by FCCP is, however, excluded.
  相似文献   

15.
Two pathways of free oxidation in liver mitochondria were examined. One of these pathways is determined by the protonophoric action of free fatty acids, and the other pathway, by passive proton leakage in the absence of fatty acids. According to the model of the proton futile cycle of mitochondria, the protonophoric activity of fatty acids was defined as a quotient of the division of the acceleration of respiration by fatty acid by the coefficient of respiration control for the proton leakage. The temperature dependence of the palmitate protonophoric activity on the Arrhenius plot has a break at 22 degrees C and is characterized by the transition of activation energy from 120 to 60 kJ/mol. The dependence of the respiration rate in state 4 on the Arrhenius plot is linear and, the activation energy is 17 kJ/mol. It was concluded that the first pathway of free oxidation is determined by the cyclic transport of fatty acids with the participation of metabolic carriers, and this process depends on the membrane fluidity; the second pathway is determined by passive leakage of protons through membrane channels, without fatty acids and this process is independent on membrane fluidity.  相似文献   

16.
Aging is associated with a decline in performance in many organs and loss of physiological performance can be due to free radicals. Mitochondria are incompletely coupled: during oxidative phosphorylation some of the redox energy is dissipated as natural proton leak across the inner membrane. To verify whether proton leak occurs in mitochondria during aging, we measured the mitochondrial respiratory chain activity, membrane potential and proton leak in liver, kidneys and heart of young and old rats. Mitochondria from old rats showed normal rates of Complex I and Complex II respiration. However, they had a lower membrane potential compared to mitochondria from younger rats. In addition, they exhibited an increased rate of proton conductance which partially dissipated the mitochondrial membrane potential when the rate of electron transport was suppressed. This could compromise energy homeostasis in aging cells in conditions that require additional energy supply and could minimize oxidative damage to DNA.  相似文献   

17.
Degenerative diseases are in part based on elevated production of ROS (reactive oxygen species) in mitochondria, mainly during stress and excessive work under stress (strenuous exercise). The production of ROS increases with increasing mitochondrial membrane potential (ΔΨm). A mechanism is described which is suggested to keep ΔΨm at low values under normal conditions thus preventing ROS formation, but is switched off under stress and excessive work to maximize the rate of ATP synthesis, accompanied by decreased efficiency. Low ΔΨm and low ROS production are suggested to occur by inhibition of respiration at high [ATP]/[ADP] ratios. The nucleotides interact with phosphorylated cytochrome c oxidase (COX), representing the step with the highest flux-control coefficient of mitochondrial respiration. At stress and excessive work neural signals are suggested to dephosphorylate the enzyme and abolish the control of COX activity (respiration) by the [ATP]/[ADP] ratio with consequent increase of ΔΨm and ROS production. The control of COX by the [ATP]/[ADP] ratio, in addition, is proposed to increase the efficiency of ATP production via a third proton pumping pathway, identified in eukaryotic but not in prokaryotic COX. We conclude that ‘oxidative stress’ occurs when the control of COX activity by the [ATP]/[ADP] ratio is switched off via neural signals.  相似文献   

18.
The problem of predicting the kinetics of proton efflux and the decay of the internal proton concentration for vesicles containing one or more buffers for which the internal proton concentration is initially higher than that of the surrounding medium is examined. An analytical solution is derived that describes the time course of the proton efflux from vesicles and the decay of the internal proton concentration under conditions of zero transmembrane electric potential. The effect of the internal buffers is to increase the time required for the proton concentration gradient to equilibrate across the membrane. To simplify the analysis we assume that the equilibration of the internal and external proton activity is due primarily to proton diffusion through the membrane, and not to hydroxyl ion flux. For a vesicle containing a single buffer the solution requires six independent physical parameters: the initial internal proton concentration, the external proton concentration, the ratio of the vesicle surface area to the internal volume, the permeability coefficient of the membrane for protons, the total concentration of the internal buffer, and the equilibrium constant for the dissociation of the internal buffer. Determination of these physical values is sufficient to predict the time dependence of the internal proton concentration and of the proton efflux. Over a pH range that is below or near the pK of the internal buffer the solution is complex. However, if the initial pH is one unit or more higher than the pK of the internal buffer the kinetics of the internal proton concentration and proton efflux can be described by a pseudo first order reaction. In this case the apparent rate constant depends linearly on the permeability coefficient and is dominated by the total internal buffer concentration and its pK. For example, increasing the internal buffer concentration inside a vesicle by 10-fold results in an approximately 10-fold increase in the half-time of the proton efflux kinetics. The theoretical analysis is applied to thylakiod vesicles using experimentally determined values for the physical parameters. The predictions of the analysis are compared to experimentally observed kinetics.  相似文献   

19.
1. Electron paramagnetic resonance spectra at 8-60 K of NADH-reduced membrane particles prepared from Paracoccus denitrificans grown anaerobically with nitrate as terminal electron acceptor show the presence of iron-sulfur centers 1-4 in the NADH-ubiquinone segment of the respiratory chain. In addition resonance lines at g = 2.058, g = 1.953 and g = 1.88 are detectable in the spectra of succinate-reduced membranes at 15 K, which are attributed to the iron-sulfur-containing nitrate reductase. 2. Sulphate-limited growth under anaerobic conditions does not affect the iron-sulfur pattern of NADH dehydrogenase or nitrate reductase. Furthermore respiratory chain-linked electron transport and its inhibition by rotenone are not influenced. These results contrast those observed for sulphate-limited growth of P. denitrificans under aerobic conditions [Eur. J. Biochem. (1977) 81, 267-275]. 3. Proton translocation studies of whole cells indicate that nitrite increases the proton conductance of the cytoplasmic membrane, resulting in a collapse of the proton gradient across the membrane. Nitrite accumulates under anaerobic growth conditions with nitrate as terminal electron acceptor; the extent of accumulation depends on the specific growth conditions. Thus the low efficiencies of respiratory chain-linked energy conservation observed during nitrate respiration [Arch. Microbiol. (1977) 112, 17-23] can be explained by the uncoupling action of nitrite.  相似文献   

20.
The aerobic respiratory chain of Escherichia coli can function with either of two different membrane-bound NADH dehydrogenases (NDH-1 and NDH-2) and with either of two ubiquinol oxidases (bd-type and bo-type). The amounts of each of these enzymes present in the E. coli membrane depend on growth conditions in general and particularly on the dissolved oxygen concentration. Previous in vitro studies have established that NDH-1 and NDH-2 differ in the extent to which they are coupled to the generation of an energy-conserving proton motive force. The same is true for the two ubiquinol oxidases. Hence, the bioenergetic efficiency of the aerobic respiratory chain must depend on the electron flux through each of the specific enzyme components which are being utilized. In this work, the specific rates of oxygen consumption for cells growing under glucose-limited conditions are reported for a series of isogenic strains in which one or more respiratory components are genetically eliminated. The results are compatible with the proton translocation values of the various components reported from in vitro measurements. The data show that (i) the bd-type oxidase is less efficient than is the bo-type oxidase, but the former is still a coupling site in the respiratory chain; and (ii) under the conditions employed, the wild-type strain uses both the NDH-1 and NDH-2 NADH dehydrogenases to a significant degree, but most of the electron flux is directed through the bo-type oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号