首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein ubiquitylation plays a major role in the regulation of cellular processes mainly through proteasome-dependent degradation, although it has become increasingly clear that it is also involved in other processes. In the fungus Mucor circinelloides, blue light regulates carotene biosynthesis, with this response controlled by crgA and mcwc-1c genes. CrgA shows characteristics of ubiquitin ligases and represses carotenogenesis in the dark, whereas mcwc-1c is a white collar 1-like gene required for its light induction. Another two white collar 1-like genes have been identified in M. circinelloides: mcwc-1a, which is involved in phototropism, and mcwc-1b, of unknown function. Analysis of double knockout mutants generated for crgA and every mcwc-1 gene demonstrated that crgA and mcwc-1c regulate carotenogenesis by independent pathways. It was also shown that the effect of crgA on carotenogenesis is mediated by mcwc-1b, which acts as a carotenogenesis activator. CrgA is involved in proteolysis-independent mono- and di-ubiquitylation of MCWC-1b, which results in its inactivation. Regulation of carotenogenesis in M. circinelloides by proteolysis-independent ubiquitylation suggests that this mechanism of control could be more widespread than previously thought.  相似文献   

3.
A gene of Blakeslea trispora has been cloned by heterologous hybridization with the Mucor circinelloides crgA gene, a repressor of light-inducible carotenogenesis. This gene is the ortholog of the M. circinelloides crgA, since it was able to restore the wild-type phenotype of a null crgA mutant of M. circinelloides. The expression of B. trispora crgA gene is light-induced and photoadapted, as occurs for M. circinelloides crgA. Light induction and photoadaptation of B. trispora crgA was also observed in M. circinelloides, which suggests that the mechanisms involved in light regulation are basically conserved between these filamentous fungi. Conservation of the regulatory pathway that controls carotene biosynthesis was supported by the light-induced and photoadapted expression of all structural carotenogenic genes of B. trispora. Consequently, the beta-carotene content of dark grown mycelia of B. trispora increased upon illumination with white light.  相似文献   

4.
5.
Mucor circinelloides responds to blue light by activating the biosynthesis of carotenoids. Gene crgA acts as a repressor of this light-regulated process, as its inactivation leads to overaccumulation of carotenoids in both the dark and the light. The predicted CrgA protein contains different recognizable structural domains, including a RING-finger zinc-binding motif, several glutamine-rich regions, a putative nuclear localization signal and an isoprenylation domain. To gain insight into the specific mode of action of the CrgA protein, we sought to define the CrgA domains critical for the light regulation of carotenogenesis. For this, mutant crgA alleles harbouring missense or deletion mutations in conserved residues of those domains were generated, and their functionality was assessed by testing their ability to complement a null crgA mutation. Point mutations of the amino-terminal RING-finger domain abrogated the ability of CrgA to repress carotenogenesis in the dark, as did the deletion of a poly glutamine-rich region at the carboxyl domain of CrgA. In contrast, mutations of the isoprenylation domain only slightly affected the CrgA function in carotenogenesis. The results identify two functional domains presumably involved in protein-protein interaction in the CrgA protein and suggest a role for the ubiquitin-proteasome pathway in the light regulation of carotenogenesis in fungi.  相似文献   

6.
Mucor circinelloides responds to blue light by activating the biosynthesis of carotenoids and bending its sporangiophores towards the light source. The CrgA protein product acts as a repressor of carotene biosynthesis, as its inactivation leads to the overaccumulation of carotenoids in both the dark and the light. We show here that asexual sporulation in Mucor is also stimulated by light and that the crgA gene is involved in sporulation, given that lack of crgA function affects both carotenogenesis and the normal production of spores. A small interference RNA (siRNA) gene silencing approach was used to block the biosynthesis of carotenoids and to demonstrate that abnormal sporulation in crgA mutants is not a consequence of a defective production of carotenes. These results reveal an active role for the predicted CrgA product, a RING-finger protein, in the control of cellular light-regulated processes in Mucor.  相似文献   

7.
8.
The phytopathogenic fungus Fusarium oxysporum is a model organism in the study of plant-fungus interactions. As other Fusarium species, illuminated cultures of F. oxysporum exhibit an orange pigmentation because of the synthesis of carotenoids, and its genome contains orthologous light-regulated car genes for this biosynthetic pathway. By chemical mutagenesis, we obtained carotenoid overproducing mutants of F. oxysporum, called carS, with upregulated mRNA levels of the car genes. To identify the regulatory gene responsible for this phenotype, a collection of T-DNA insertional mutants obtained by Agrobacterium mediated transformation was screened for carotenoid overproduction. Three candidate transformants exhibited a carS-like phenotype, and two of them contained T-DNA insertions in the same genomic region. The insertions did not affect the integrity of any annotated ORFs, but were linked to a gene coding for a putative RING-finger (RF) protein. Based on its similarity to the RF protein CrgA from the zygomycete Mucor circinelloides, whose mutation results in a similar carotenoid deregulation, this gene (FOXG_09307) was investigated in detail. Its expression was not affected in the transformants, but mutant alleles were found in several carS mutants. A strain carrying a partial FOXG_09307 deletion, fortuitously generated in a targeted transformation experiment, exhibited the carS phenotype. This mutant and a T-DNA insertional mutant holding a 5-bp insertion in FOXG_09307 were complemented with the wild type FOXG_09307 allele. We conclude that this gene is carS, encoding a RF protein involved in down-regulation of F. oxysporum carotenogenesis.  相似文献   

9.
10.
The RING finger protein CrgA acts as a negative regulator of light-induced carotene biosynthesis in the fungus Mucor circinelloides. Sequence analysis of the crgA coding region upstream of the first AUG codon revealed the existence of an additional non-canonical RING finger domain at the most N-terminal end of the protein. The newly identified RING finger domain is required for CrgA to regulate photocarotenogenesis, as deduced from site-directed mutagenesis experiments. The role of both RING finger domains in the stability of CrgA has been investigated in a yeast system. Wild type CrgA, but not the RING finger deleted forms, is highly unstable and is stabilized by inhibition of the proteasome function, which suggests that native CrgA is degraded by the proteasome and that active RING finger domains are required for proteasome-mediated CrgA degradation. To identify the translation start of CrgA, a mutational analysis of putative initiation codons in the 5' region of the crgA gene was accomplished. We demonstrated that a GUG codon located upstream of the first AUG is the sole initiator of CrgA translation. To our knowledge, this is the first report of a naturally occurring non-AUG start codon for a RING finger regulatory protein. A combination of suboptimal translation initiation and proteasome degradation may help to maintain the low cellular levels of CrgA observed in wild type cells, which is probably required for accurate regulation of photocarotenogenesis.  相似文献   

11.
In the yeast Xanthophyllomyces dendrorhous the genes idi, crtE, crtYB, crtl and ast are involved in the biosynthesis of astaxanthin from isopentenyl pyrophosphate. The carotenoid production and the kinetics of mRNA expression of structural genes controlling the carotenogenesis in a wild-type ATCC 24230 and in carotenoid overproducer deregulated atxS2 strains were studied. The biosynthesis of carotenoid was induced at the late exponential growth phase in both strains. However, the cellular carotenoid concentration was four times higher in atxS2 than in the wild-type strain in the exponential growth phase, suggesting that carotenogenesis was deregulated in atxS2 at the beginning of growth. In addition, the maximum expression of the carotenogenesis genes at the mRNA level was observed during the induction period of carotenoid biosynthesis in the wild-type strain. The mRNA level of the crtYB, crtl, ast genes and to a lesser extent the idi gene, decayed at the end of the exponential growth phase. The mRNA levels of the crtE gene remained high along the whole growth curve of the yeast. In the atxS2 strain the mRNA levels of crtE gene were about two times higher than the wild-type strain in the early phase of the growth cycle.  相似文献   

12.
The effects of impaired carotenogenesis on plastid membrane organization, functionality and stability were studied in etiolated barley plants grown at 20 and 30°C. The plants were treated with norflurazon or amitrole, two herbicides affecting phytoene desaturation and lycopene cyclization, respectively. At 20°C, the amitrole-treated etioplasts, which accumulated lycopene in their inner membranes, exhibited disorganized prolamellar bodies, containing a prevalent form of non-phototransformable protochlorophyllide (Pchlide). They also showed a certain difficulty in reducing the phototransformable pigment to chlorophyllide when exposed to light, and were unable to reform the active ternary complex [protochlorophyllide–oxidoreductase (POR)–Pchlide–NADPH] when placed back in darkness. No ultrastructural alterations were found in norflurazon-treated etioplasts, with carotenogenesis inhibited at the phytoene desaturation step. In these latter organelles, Pchlide, whose forms were comparable with those of the control etioplasts, was photoreduced quickly after illumination and the ternary complex was reformed during a subsequent dark period. Thus, the impaired carotenogenesis leading to the accumulation of lycopene showed greater interference with the etioplast membrane arrangement and functionality than did the earlier interruption of the biosynthetic pathway at the phytoene level. This might be due to the different interactions of the distinct carotenoid precursors with other membrane components. However, in etioplasts of norflurazon-treated plants, a rise in growth temperature caused a partial demolition of prolamellar bodies, showing a lowered thermostability of the carotenoid-deficient membranes. This latter effect strengthens the concept that a correct and complete carotenogenesis pathway, leading to the synthesis of polar carotenoids (i.e. xanthophylls), is required for the maintenance of stable plastid membranes.  相似文献   

13.
A genomic library of Mucor circinelloides ATCC 1216b has been constructed in Lambda Fix II vector. The library has an average insert site of 10 kb and covers the genome 12 times. The M. circinelloides gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd) was isolated from this library by hybridization of the recombinant phage clones with a gpd-specific gene probe generated by PCR reaction. The complete nucleotide sequence encodes a putative polypeptide chain of 339 amino acids interrupted by 3 introns. The predicted amino acid sequence of this gene shows a high degree of sequence similarity to the GPD proteins from other filamentous fungi. The promoter region, containing a consensus TATA and CAAT box and a 298 nucleotid long termination region were also determined.  相似文献   

14.
Light regulates many developmental and physiological processes in a large number of organisms. The best-known light response in the fungus Mucor circinelloides is the biosynthesis of beta-carotene. Here, we show that M. circinelloides sporangiophores also respond to light, exhibiting a positive phototropism. Analysis of both responses to different light wavelengths within the visible spectrum demonstrated that phototropism is induced by green and blue light, whereas carotenogenesis is only induced by blue light. The blue regulation of both responses suggests the existence of blue-light photoreceptors in M. circinelloides. Three white collar-1 genes (mcwc-1a, mcwc-1b and mcwc-1c) coding for proteins showing similarity with the WC-1 photoreceptor of Neurospora crassa have been identified. All three contain a LOV (light, oxygen or voltage) domain, similar to that present in fungal and plant blue-light receptors. When knockout mutants for each mcwc-1 gene were generated to characterize gene functions, only mcwc-1c mutants were defective in light induction of carotene biosynthesis, indicating that mcwc-1c is involved in the light transduction pathway that control carotenogenesis. We have also shown that positive phototropism is controlled by the mcwc-1a gene. It seems therefore that mcwc-1a and mcwc-1c genes control different light transduction pathways, although cross-talk between both pathways probably exists because mcwc-1a is involved in the light regulation of mcwc-1c expression.  相似文献   

15.
A Schmidt  G Sandmann 《Gene》1990,91(1):113-117
The membrane-bound phytoene dehydrogenase (PD) is an enzyme in carotenoid biosynthesis which is essential in all microorganisms and plants containing these colored pigments. Despite its key role in the regulation of carotenogenesis, the biochemistry and molecular biology of PD are poorly understood. We have cloned, sequenced and expressed a portion of the PD-encoding gene, crtI, from the blue-green algae Aphanocapsa PCC6714. The gene codes for a 532-amino acids (aa) protein, with a calculated Mr of 52,598 Da. Two regions of the aa sequence share significant homology with PD from the purple bacterium Rhodobacter capsulatus, including a 30-aa region which has been proposed to be specific for dehydrogenases in carotenoid biosynthesis.  相似文献   

16.
17.
植物类胡萝卜素生物合成及其相关基因在基因工程中的应用   总被引:29,自引:0,他引:29  
近年来类胡萝卜素生物合成基因的分离与功能鉴定,为应用基因工程技术改变植物体内类胡萝卜素成份和提高类胡萝卜素含量提供了新的基因资源.有关类胡萝卜素合成的生物化学及其在体内调控研究的新进展,使通过遗传操作调控植物体内类胡萝卜素生物合成途径成为可能.该文综述了类胡萝卜素生物合成途径及其相关基因的研究现状,并结合作者的工作介绍了应用转基因技术改变植物体内类胡萝卜素成份与含量的最新成功的事例.  相似文献   

18.
Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号