首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

CCR5-restricted (R5) human immunodeficiency virus type 1 (HIV-1) variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env) determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA) and AIDS (A) R5 Envs, respectively.

Results

Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362), a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs) residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure.

Conclusion

Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.  相似文献   

2.
Lin G  Lee B  Haggarty BS  Doms RW  Hoxie JA 《Journal of virology》2001,75(22):10766-10778
Envelope glycoproteins (Envs) of human immunodeficiency virus type 2 (HIV-2) are frequently able to use chemokine receptors, CXCR4 or CCR5, in the absence of CD4. However, while these Envs are commonly dual-tropic, no isolate has been described to date that is CD4 independent on both CXCR4 and CCR5. In this report we show that a variant of HIV-2/NIHz, termed HIV-2/vcp, previously shown to utilize CXCR4 without CD4, is also CD4 independent on rhesus (rh) CCR5, but requires CD4 to fuse with human (hu) CCR5. The critical determinant for this effect was an acidic amino acid at position 13 in the CCR5 N terminus, which is an asparagine in huCCR5 and an aspartic acid in rhCCR5. Transferring the huCCR5 N terminus with an N13D substitution to CCR2b or CXCR2 was sufficient to render these heterologous chemokine receptors permissive for CD4-independent fusion. Chimeric Envs between HIV-2/vcp and a CD4-dependent clone of HIV-2/NIHz as well as site-directed Env mutations implicated a positively charged amino acid (lysine or arginine) at position 427 in the C4 region of the HIV-2/vcp env gene product (VCP) gp120 as a key determinant for this phenotype. Because CD4-independent use of CCR5 mapped to a negatively charged amino acid in the CCR5 N terminus and a positively charged amino acid in the gp120 C4 domain, an electrostatic interaction between these residues or domains is likely. Although not required for CD4-dependent fusion, this interaction may serve to increase the binding affinity of Env and CCR5 and/or to facilitate subsequent conformational changes that are required for fusion. Because the structural requirements for chemokine receptor use by HIV are likely to be more stringent in the absence of CD4, CD4-independent viruses should be particularly useful in dissecting molecular events that are critical for viral entry.  相似文献   

3.
HIV-1 infections lead to a progressive depletion of CD4 cells culminating in AIDS. The coreceptor usage by HIV varies from CCR5 (R5) tropic early in infection to CXCR4 (X4) tropic in later infections. Although the coreceptor switch from R5 to X4 tropic HIV is well associated with progression to AIDS, the role of CCR5 in disease progression especially in patients infected exclusively with R5 isolates throughout the disease remains enigmatic. To better understand the role of CCR5 and R5 tropic HIV envelope in AIDS pathogenesis, we asked whether the levels of CCR5 and/or HIV Env-mediated fusion determine apoptosis of bystander cells. We generated CD4(+) T cell lines expressing varying levels of CCR5 on the cell surface to show that CCR5 expression levels correlate with bystander apoptosis induction. The mechanism of apoptosis involved caspase-3 activation and mitochondrial depolarization and was dependent on gp41 fusion activity as confirmed by fusion-restricted gp41 point mutants and use of the fusion inhibitor T20. Interestingly, lower levels of CCR5 were able to support virus replication in the absence of bystander apoptosis. Our findings suggest that R5 HIV-1-mediated bystander apoptosis is dependent on both CCR5 expression levels as well as fusogenic activity of the Env glycoprotein.  相似文献   

4.
Apoptosis of uninfected bystander CD4(+) T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) pathogenesis. The viral and host mechanisms that lead to bystander apoptosis are not well understood. To investigate properties of the viral envelope glycoproteins (Env proteins) that influence the ability of HIV-1 to induce bystander apoptosis, we used molecularly cloned viruses that differ only in specific amino acids in Env. The ability of these strains to induce bystander apoptosis was tested in herpesvirus saimiri-immortalized primary CD4(+) T cells (CD4/HVS), which resemble activated primary T cells. Changes in Env that increase affinity for CD4 or CCR5 or increase coreceptor binding site exposure enhanced the capacity of HIV-1 to induce bystander apoptosis following viral infection or exposure to nonreplicating virions. Apoptosis induced by HIV-1 virions was inhibited by CD4, CXCR4, and CCR5 antibodies or by the CXCR4 inhibitor AMD3100, but not the fusion inhibitor T20. HIV-1 virions with mutant Envs that bind CXCR4 but are defective for CD4 binding or membrane fusion induced apoptosis, whereas CXCR4 binding-defective mutants did not. These results demonstrate that HIV-1 virions induce apoptosis through a CXCR4- or CCR5-dependent pathway that does not require Env/CD4 signaling or membrane fusion and suggest that HIV-1 variants with increased envelope/receptor affinity or coreceptor binding site exposure may promote T-cell depletion in vivo by accelerating bystander cell death.  相似文献   

5.
Macrophage tropism of human immunodeficiency virus type 1 (HIV-1) is distinct from coreceptor specificity of the viral envelope glycoproteins (Env), but the virus-cell interactions that contribute to efficient HIV-1 entry into macrophages, particularly via CXCR4, are not well understood. Here, we characterized a panel of HIV-1 Envs that use CCR5 (n = 14) or CXCR4 (n = 6) to enter monocyte-derived macrophages (MDM) with various degrees of efficiency. Our results show that efficient CCR5-mediated MDM entry by Env-pseudotyped reporter viruses is associated with increased tolerance of several mutations within the CCR5 N terminus. In contrast, efficient CXCR4-mediated MDM entry was associated with reduced tolerance of a large deletion within the CXCR4 N terminus. Env sequence analysis and structural modeling identified amino acid variants at positions 261 and 263 within the gp41-interactive region of gp120 and a variant at position 326 within the gp120 V3 loop that were associated with efficient CXCR4-mediated MDM entry. Mutagenesis studies showed that the gp41 interaction domain variants exert a significant but strain-specific influence on CXCR4-mediated MDM entry, suggesting that the structural integrity of the gp120-gp41 interface is important for efficient CXCR4-mediated MDM entry of certain HIV-1 strains. However, the presence of Ile326 in the gp120 V3 loop stem, which we show by molecular modeling is located at the gp120-coreceptor interface and predicted to interact with the CXCR4 N terminus, was found to be critical for efficient CXCR4-mediated MDM entry of divergent CXCR4-using Envs. Together, the results of our study provide novel insights into alternative mechanisms of Env-coreceptor engagement that are associated with efficient CCR5- and CXCR4-mediated HIV-1 entry into macrophages.  相似文献   

6.
Infection by HIV-1 most often results from the successful transmission and propagation of a single virus variant, termed the transmitted/founder (T/F) virus. Here, we compared the attachment and entry properties of envelope (Env) glycoproteins from T/F and chronic control (CC) viruses. Using a panel of 40 T/F and 47 CC Envs, all derived by single genome amplification, we found that 52% of clade C and B CC Envs exhibited partial resistance to the CCR5 antagonist maraviroc (MVC) on cells expressing high levels of CCR5, while only 15% of T/F Envs exhibited this same property. Moreover, subtle differences in the magnitude with which MVC inhibited infection on cells expressing low levels of CCR5, including primary CD4+ T cells, were highly predictive of MVC resistance when CCR5 expression levels were high. These results are consistent with previous observations showing a greater sensitivity of T/F Envs to MVC inhibition on cells expressing very high levels of CCR5 and indicate that CC Envs are often capable of recognizing MVC-bound CCR5, albeit inefficiently on cells expressing physiologic levels of CCR5. When CCR5 expression levels are high, this phenotype becomes readily detectable. The utilization of drug-bound CCR5 conformations by many CC Envs was seen with other CCR5 antagonists, with replication-competent viruses, and did not obviously correlate with other phenotypic traits. The striking ability of clade C and B CC Envs to use MVC-bound CCR5 relative to T/F Envs argues that the more promiscuous use of CCR5 by these Env proteins is selected against at the level of virus transmission and is selected for during chronic infection.  相似文献   

7.
We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) isolated from two HIV-1-infected CCR5delta32 homozygotes. Envs from both subjects used CCR5 and CXCR4 for entry into transfected cells. Most R5X4 Envs were lymphocyte-tropic and used CXCR4 exclusively for entry into peripheral blood mononuclear cells (PBMC), but a subset was dually lymphocyte- and macrophage-tropic and used either CCR5 or CXCR4 for entry into PBMC and monocyte-derived macrophages. The persistence of CCR5-using HIV-1 in two CCR5delta32 homozygotes suggests the conserved CCR5 binding domain of Env is highly stable and provides new mechanistic insights important for HIV-1 transmission and persistence.  相似文献   

8.
Yi Y  Singh A  Shaheen F  Louden A  Lee C  Collman RG 《Journal of virology》2003,77(22):12057-12066
Macrophagetropic R5 human immunodeficiency virus type 1 (HIV-1) isolates often evolve into dualtropic R5X4 variants during disease progression. The structural basis for CCR5 coreceptor function has been studied in a limited number of prototype strains and suggests that R5 and R5X4 Envs interact differently with CCR5. However, differences between unrelated viruses may reflect strain-specific factors and do not necessarily represent changes resulting from R5 to R5X4 evolution of a virus in vivo. Here we addressed CCR5 domains involved in fusion for a large set of closely related yet functionally distinct variants within a primary isolate swarm, employing R5 and R5X4 Envs derived from the HIV-1 89.6(PI) quasispecies. R5 variants of 89.6(PI) could fuse using either N-terminal or extracellular loop CCR5 sequences in the context of CCR5/CXCR2 chimeras, similar to the unrelated R5 strain JRFL, but R5X4 variants of 89.6(PI) were highly dependent on the CCR5 N terminus. Similarly, R5 89.6(PI) variants and isolate JRFL tolerated N-terminal CCR5 deletions, but fusion by most R5X4 variants was markedly impaired. R5 89.6(PI) Envs also tolerated multiple extracellular domain substitutions, while R5X4 variants did not. In contrast to CCR5 use, fusion by R5X4 variants of 89.6(PI) was largely independent of the CXCR4 N-terminal region. Thus, R5 and R5X4 species from a single swarm differ in how they interact with CCR5. These results suggest that R5 Envs possess a highly plastic capacity to interact with multiple CCR5 regions and support the concept that viral evolution in vivo results from the emergence of R5X4 variants with the capacity to use the CXCR4 extracellular loops but demonstrate less-flexible interactions with CCR5 that are strongly dependent on the N-terminal region.  相似文献   

9.
GM3, a major ganglioside of T lymphocytes, promotes human immunodeficiency virus type 1 (HIV-1) entry via interactions with HIV-1 receptors and the viral envelope glycoprotein (Env). Increased GM3 levels in T lymphocytes and the appearance of anti-GM3 antibodies in AIDS patients have been reported earlier. In this study, we investigated the effect of GM3 regulation on HIV-1 entry by utilizing a mouse cell line (B16F10), which expresses exceptionally high levels of GM3. Strikingly, B16 cells bearing CD4, CXCR4, and/or CCR5 were highly resistant to CD4-dependent HIV-1 Env-mediated membrane fusion. In contrast, these targets supported membrane fusion mediated by CD4-requiring HIV-2, SIV, and CD4-independent HIV-1 Envs. Coreceptor function was not impaired by GM3 overexpression as indicated by Ca(2+) fluxes mediated by the CXCR4 ligand SDF-1alpha and the CCR5 ligand MIP-1beta. Reduction in GM3 levels of B16 target cells resulted in a significant recovery of CD4-dependent HIV-1 Env-mediated fusion. We propose that GM3 in the plasma membrane blocks HIV-1 Env-mediated fusion by interfering with the lateral association of HIV-1 receptors. Our findings offer a novel mechanism of interplay between membrane lipids and receptors by which host cells may escape viral infections.  相似文献   

10.
The viral determinants that underlie human immunodeficiency virus type 1 (HIV-1) neurotropism are unknown, due in part to limited studies on viruses isolated from brain. Previous studies suggest that brain-derived viruses are macrophage tropic (M-tropic) and principally use CCR5 for virus entry. To better understand HIV-1 neurotropism, we isolated primary viruses from autopsy brain, cerebral spinal fluid, blood, spleen, and lymph node samples from AIDS patients with dementia and HIV-1 encephalitis. Isolates were characterized to determine coreceptor usage and replication capacity in peripheral blood mononuclear cells (PBMC), monocyte-derived macrophages (MDM), and microglia. Env V1/V2 and V3 heteroduplex tracking assay and sequence analyses were performed to characterize distinct variants in viral quasispecies. Viruses isolated from brain, which consisted of variants that were distinct from those in lymphoid tissues, used CCR5 (R5), CXCR4 (X4), or both coreceptors (R5X4). Minor usage of CCR2b, CCR3, CCR8, and Apj was also observed. Primary brain and lymphoid isolates that replicated to high levels in MDM showed a similar capacity to replicate in microglia. Six of 11 R5 isolates that replicated efficiently in PBMC could not replicate in MDM or microglia due to a block in virus entry. CD4 overexpression in microglia transduced with retroviral vectors had no effect on the restricted replication of these virus strains. Furthermore, infection of transfected cells expressing different amounts of CD4 or CCR5 with M-tropic and non-M-tropic R5 isolates revealed a similar dependence on CD4 and CCR5 levels for entry, suggesting that the entry block was not due to low levels of either receptor. Studies using TAK-779 and AMD3100 showed that two highly M-tropic isolates entered microglia primarily via CXCR4. These results suggest that HIV-1 tropism for macrophages and microglia is restricted at the entry level by a mechanism independent of coreceptor specificity. These findings provide evidence that M-tropism rather than CCR5 usage predicts HIV-1 neurotropism.  相似文献   

11.
Retrocyclin-1, a -defensin, protects target cells from human immunodeficiency virus, type 1 (HIV-1) by preventing viral entry. To delineate its mechanism, we conducted fusion assays between susceptible target cells and effector cells that expressed HIV-1 Env. Retrocyclin-1 (4 microm) completely blocked fusion mediated by HIV-1 Envs that used CXCR4 or CCR5 but had little effect on cell fusion mediated by HIV-2 and simian immunodeficiency virus Envs. Retrocyclin-1 inhibited HIV-1 Env-mediated fusion without impairing the lateral mobility of CD4, and it inhibited the fusion of CD4-deficient cells with cells bearing CD4-independent HIV-1 Env. Thus, it could act without cross-linking membrane proteins or inhibiting gp120-CD4 interactions. Retrocyclin-1 acted late in the HIV-1 Env fusion cascade but prior to 6-helix bundle formation. Surface plasmon resonance experiments revealed that retrocyclin bound the ectodomain of gp41 with high affinity in a glycan-independent manner and that it bound selectively to the gp41 C-terminal heptad repeat. Native-PAGE, enzyme-linked immunosorbent assay, and CD spectroscopic analyses all revealed that retrocyclin-1 prevented 6-helix bundle formation. This mode of action, although novel for an innate effector molecule, resembles the mechanism of peptidic entry inhibitors based on portions of the gp41 sequence.  相似文献   

12.
Apoptosis of neurons and astrocytes is induced by human immunodeficiency type 1 (HIV-1) infection in vitro and has been demonstrated in brain tissue from patients with AIDS. We analyzed a panel of diverse HIV-1 primary isolates for the ability to replicate and induce neuronal and astrocyte apoptosis in primary human brain cultures. Apoptosis was induced three- to eightfold by infection with the blood-derived HIV-1 isolates 89.6, SG3, and ADA. In contrast, the brain-derived HIV-1 isolates YU2, JRFL, DS-br, RC-br, and KJ-br did not induce significant levels of apoptosis. The ability of HIV-1 isolates to induce apoptosis was independent of their replication capacity. Studies of recombinant chimeras between the SG3 and YU2 viruses showed that replacement of the YU2 Env with the SG3 Env was sufficient to confer the ability to induce apoptosis to the YU2 virus. Replacement of the Env V3 regions alone largely conferred the phenotypes of the parental clones. The SG3 Env used CXCR4 and CCR3 as coreceptors for virus entry, whereas YU2 used CCR5 and CCR3. The V3 regions of SG3 and YU2 conferred the ability to use CXCR4 and CCR5, respectively. In contrast, the 3′ region of Env, particularly the C3V4 region, was required in conjunction with the V3 region for efficient use of CCR3. These results provide evidence that Env is a major determinant of neurodegenerative mechanisms associated with HIV-1 infection in vitro and raise the possibility that blood-derived viruses which emerge during the late stages of disease may affect disease progression in the central nervous system.  相似文献   

13.
Mulampaka SN  Dixit NM 《PloS one》2011,6(5):e19941
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as ~20 μm(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.  相似文献   

14.
Maraviroc (MVC) inhibits the entry of human immunodeficiency virus type 1 (HIV-1) by binding to and modifying the conformation of the CCR5 extracellular loops (ECLs). Resistance to MVC results from alterations in the HIV-1 gp120 envelope glycoproteins (Env) enabling recognition of the drug-bound conformation of CCR5. To better understand the mechanisms underlying MVC resistance, we characterized the virus-cell interactions of gp120 from in vitro-generated MVC-resistant HIV-1 (MVC-Res Env), comparing them with those of gp120 from the sensitive parental virus (MVC-Sens Env). In the absence of the drug, MVC-Res Env maintains a highly efficient interaction with CCR5, similar to that of MVC-Sens Env, and displays a relatively modest increase in dependence on the CCR5 N terminus. However, in the presence of the drug, MVC-Res Env interacts much less efficiently with CCR5 and becomes critically dependent on the CCR5 N terminus and on positively charged elements of the drug-modified CCR5 ECL1 and ECL2 regions (His88 and His181, respectively). Structural analysis suggests that the Val323 resistance mutation in the gp120 V3 loop alters the secondary structure of the V3 loop and the buried surface area of the V3 loop-CCR5 N terminus interface. This altered mechanism of gp120-CCR5 engagement dramatically attenuates the entry of HIV-1 into monocyte-derived macrophages (MDM), cell-cell fusion activity in MDM, and viral replication capacity in MDM. In addition to confirming that HIV-1 escapes MVC by becoming heavily dependent on the CCR5 N terminus, our results reveal novel interactions with the drug-modified ECLs that are critical for the utilization of CCR5 by MVC-Res Env and provide additional insights into virus-cell interactions that modulate macrophage tropism.  相似文献   

15.
Yang X  Kurteva S  Ren X  Lee S  Sodroski J 《Journal of virology》2005,79(19):12132-12147
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs) function as a trimer, mediating virus entry by promoting the fusion of the viral and target cell membranes. HIV-1 Env trimers induce membrane fusion through a pH-independent pathway driven by the interaction between an Env trimer and its cellular receptors, CD4 and CCR5/CXCR4. We studied viruses with mixed heterotrimers of wild-type and dominant-negative Envs to determine the number (T) of Env trimers required for HIV-1 entry. To our surprise, we found that a single Env trimer is capable of supporting HIV-1 entry; i.e., T = 1. A similar approach was applied to investigate the entry stoichiometry of envelope glycoproteins from amphotropic murine leukemia virus (A-MLV), avian sarcoma/leukosis virus type A (ASLV-A), and influenza A virus. When pseudotyped on HIV-1 virions, the A-MLV and ASLV-A Envs also exhibit a T = 1 entry stoichiometry. In contrast, eight to nine influenza A virus hemagglutinin trimers function cooperatively to achieve membrane fusion and virus entry, using a pH-dependent pathway. The different entry requirements for cooperativity among Env trimers for retroviruses and influenza A virus may influence viral strategies for replication and evasion of the immune system.  相似文献   

16.
Entry of human immunodeficiency virus type 1 (HIV-1) and HIV-2 requires interactions between the envelope glycoprotein (Env) on the virus and CD4 and a chemokine receptor, either CCR5 or CXCR4, on the cell surface. The V3 loop of the HIV gp120 glycoprotein plays a critical role in this process, determining tropism for CCR5- or CXCR4-expressing cells, but details of how V3 interacts with these receptors have not been defined. Using an iterative process of deletion mutagenesis and in vitro adaptation of infectious viruses, variants of HIV-2 were derived that could replicate without V3, either with or without a deletion of the V1/V2 variable loops. The generation of these functional but markedly minimized Envs required adaptive changes on the gp120 core and gp41 transmembrane glycoprotein. V3-deleted Envs exhibited tropism for both CCR5- and CXCR4-expressing cells, suggesting that domains on the gp120 core were mediating interactions with determinants shared by both coreceptors. Remarkably, HIV-2 Envs with V3 deletions became resistant to small-molecule inhibitors of CCR5 and CXCR4, suggesting that these drugs inhibit wild-type viruses by disrupting a specific V3 interaction with the coreceptor. This study represents a proof of concept that HIV Envs lacking V3 alone or in combination with V1/V2 that retain functional domains required for viral entry can be derived. Such minimized Envs may be useful in understanding Env function, screening for new inhibitors of gp120 core interactions with chemokine receptors, and designing novel immunogens for vaccines.  相似文献   

17.
The stage of differentiation and the lineage of CD4+ cells profoundly affect their susceptibility to infection by human immunodeficiency virus type 1 (HIV-1). While CD4+ T lymphocytes in patients are readily susceptible to HIV-1 infection, peripheral blood monocytes are relatively resistant during acute or early infection, even though monocytes also express CD4 and viral strains with macrophage (M)-tropic phenotypes predominate. CCR5, the main coreceptor for M-tropic viruses, clearly contributes to the ability of CD4+ T cells to be infected. To determine whether low levels of CCR5 expression account for the block in infection of monocytes, we examined primary monocyte lineage cells during differentiation. Culturing of blood monocytes for 5 days led to an increase in the mean number of CCR5-positive cells from <20% of monocytes to >80% of monocyte-derived macrophages (MDM). Levels of CCR5 expression per monocyte were generally lower than those on MDM, perhaps below a minimum threshold level necessary for efficient infection. Productive infection may be restricted to the small subset of monocytes that express relatively high levels of CCR5. Steady-state CCR5 mRNA levels also increased four- to fivefold during MDM differentiation. Infection of MDM by M-tropic HIV-1JRFL resulted in >10-fold-higher levels of p24, and MDM harbored >30-fold more HIV-1 DNA copies than monocytes. In the presence of the CCR5-specific monoclonal antibody (MAb) 2D7, virus production and cellular levels of HIV-1 DNA were decreased by >80% in MDM, indicating a block in viral entry. There was a direct association between levels of CCR5 and differentiation of monocytes to macrophages. Levels of CCR5 were related to monocyte resistance and macrophage susceptibility to infection because infection by the M-tropic strain HIV-1JRFL could be blocked by MAb 2D7. These results provide direct evidence that CCR5 functions as a coreceptor for HIV-1 infection of primary macrophages.  相似文献   

18.
T-tropic (X4) and dualtropic (R5X4) human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins kill primary and immortalized CD4(+) CXCR4(+) T cells by mechanisms involving membrane fusion. However, because much of HIV-1 infection in vivo is mediated by M-tropic (R5) viruses whose envelope glycoproteins use CCR5 as a coreceptor, we tested a panel of R5 and R5X4 envelope glycoproteins for their ability to lyse CCR5(+) target cells. As is the case for CXCR4(+) target cells, HIV-1 envelope glycoproteins expressed by single-round HIV-1 vectors killed transduced CD4(+) CCR5(+) cells in a membrane fusion-dependent manner. Furthermore, a CD4-independent R5 HIV-1 envelope glycoprotein was able to kill CD4-negative target cells expressing CCR5, demonstrating that CD4 is not intrinsically required for the induction of death. Interestingly, high levels of CD4 expression protected cells from lysis and syncytium formation mediated by the HIV-1 envelope glycoproteins. Immunoprecipitation experiments showed that high levels of CD4 coexpression inhibited proteolytic processing of the HIV-1 envelope glycoprotein precursor gp160. This inhibition could be overcome by decreasing the CD4 binding ability of gp120. Studies were also undertaken to investigate the ability of virion-bound HIV-1 envelope glycoproteins to kill primary CD4(+) T cells. However, neither X4 nor R5X4 envelope glycoproteins on noninfectious virions caused death in primary CD4(+) T cells. These results demonstrate that the interaction of CCR5 with R5 HIV-1 envelope glycoproteins capable of inducing membrane fusion leads to cell lysis; overexpression of CD4 can inhibit cell killing by limiting envelope glycoprotein processing.  相似文献   

19.
A rapid decline in T-cell counts and the progression to AIDS is often associated with a switch from CCR5-tropic (R5) HIV-1 to CXCR4-tropic (X4) HIV-1 or R5/X4 HIV-1 variants. Experimental infection with R5 HIV-1 causes less T-cell depletion than infection with X4 or R5/X4 variants in T-cell cultures, in ex vivo infected human lymphoid tissue and in SCID/hu mice, despite similar replication levels. Experimental genetic changes in those sequences in gp120 that transform R5 HIV-1 variants into otherwise isogenic X4 viruses make them highly cytopathic. Thus, it is now believed that R5 variants are less cytopathic for T cells than are X4 variants. However, it is not known why CCR5-mediated HIV-1 infection does not lead to a massive CD4+ T-cell depletion, as occurs in CXCR4-mediated HIV-1 infection. Here we demonstrate that R5 HIV-1 isolates are indeed highly cytopathic, but only for CCR5+/CD4+ T cells. Because these cells constitute only a small fraction of CD4+ T cells, their depletion does not substantially change the total CD4+ T-cell count. These results may explain why the clinical stage of HIV disease correlates with viral tropism.  相似文献   

20.
Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号