首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We address the controversy of whether mature myofibrils can form in the presence of taxol, a microtubule-stabilizing compound. Previous electron microscopic studies reported the absence of actin filaments and Z-bands in taxol-treated myocytes [Antin et al., 1981: J Cell Biol 90:300-308; Toyoma et al., 1982: Proc Natl Acad Sci USA 79:6556-6560]. Quail skeletal myoblasts were isolated from 10-day-old embryos and grown in the presence or absence of taxol. Taxol inhibited the formation of multinucleated elongated myotubes. Myocytes cultured in the continual presence of taxol progressed from rounded to stellate shapes. Groups of myocytes that were clustered together after the isolation procedure fused in the presence of taxol but did not form elongated myotubes. Actin filaments and actin-binding proteins were detected with several different fluorescent probes in all myofibrils that formed in the presence of taxol. The Z-bands contained both alpha-actinin and titin, and the typical arrays of A-Bands were always associated with actin filaments in the myofibrils. Myofibril formation was followed by fixing cells each day in culture and staining with probes for actin, muscle-specific alpha-actinin, myosin II, nebulin, troponin, tropomyosin, and non-muscle myosin II. Small linear aggregates of alpha-actinin or Z-bodies, premyofibrils, were detected at the edges of the myocytes and in the arms of the taxol-treated cells and were always associated with actin filaments. Non-muscle myosin II was detected at the edges of the taxol-treated cells. Removal of the taxol drug led to the cells assuming a normal compact elongated shape. During the recovery process, additional myofibrils formed at the spreading edges of these elongated and thicker myotubes. Staining of these taxol-recovering cells with specific fluorescent reagents reveals three different classes of actin fibers. These results are consistent with a model of myofibrillogenesis that involves the transition of premyofibrils to mature myofibrils.  相似文献   

2.
Dynamic properties of microtubules at steady state in the presence of taxol   总被引:4,自引:0,他引:4  
The dynamic properties of steady-state microtubules in the presence of the antitumor drug taxol and GTP, but in the absence of microtubule-associated proteins have been studied. The molecular rate constants for the loss or gain of subunits at steady state was found to be dramatically decreased as compared with that for microtubules formed in the presence of GTP and microtubule-associated proteins but in the absence of taxol [Zeeberg, B., Reid, R., and Caplow, M. (1980) J. Biol. Chem. 255, 9891-9899]. In light of this change it was surprising to find that the degrees of directionality for subunit flux into the microtubule at steady state are nearly identical within 1.5% of each other) in the two systems. One mechanism to account for this would be for taxol to cause a nearly identical decrease in the rate constants for subunit dissociation at both ends of the microtubule, with no effect on the rate constants for subunit addition. Similar results have previously been found in studies with an endogenous effector of the microtubule steady state, a protein kinase [Jameson, J. L. and Caplow, M. (1981) Proc. Natl Acad. Sci. USA, 78, 3413-3417]. In this case it was found that phosphorylation of microtubule-associated proteins altered the molecular rate constants for tubulin subunit addition and dissociation, but had no effect on the degree of directionality for subunit flux. It will be of interest to determine whether other exogenous or endogenous effectors also act in a manner such as to leave the directionality unaltered.  相似文献   

3.
A rat pancreas supernatant was applied to an affinity column where colchicine analogues had been coupled to CNBr-Sepharose 4B, and subsequent elution with 0.35 M sodium chloride gave tubulin among other proteins. Incubation with 5 microM taxol, a natural plant product, resulted in the assembly of tubulin as checked by turbidimetry at 350 nm. Electron microscope observation of the structures obtained revealed (i) the presence of numerous microtubules with the same morphological parameters as brain microtubules, and (ii) that immunoreactive tubulin molecules were well-distributed along the microtubules as shown by the immunogold staining technique. Biochemical evidence indicated that the microtubules obtained were exclusively composed of tubulin, as demonstrated by slab gel polyacrylamide electrophoresis and by immunoblot staining with highly specific tubulin antibodies.  相似文献   

4.
Rings of guanosine diphosphate (GDP)-tubulin formed in the presence of divalent cations have been studied using conventional negative stain and cryo-electron microscopy. The structure of such rings resembles that of depolymerizing microtubule ends and corresponds to an “unconstrained” conformation of tubulin in its GDP state. The use of cryo-techniques has allowed us to image the ring polymers free from dehydration and flattening artifacts. Preparations of frozenhydrated GDP-tubulin rings are generally heterogeneous and contain a mixture of double, triple, and incomplete rings, as well as spirals and some rare single rings. Images of different polymer types can be identified and classified into groups that are then amenable for averaging and single particle reconstruction methods. Identifying the differences in tubulin structure, between straight and curve protofilaments, will be important to understand the molecular bases of dynamic instability in microtubules.  相似文献   

5.
The complex polymerization dynamics of the microtubule (MT) plus end are closely linked to the hydrolysis of the GTP nucleotide bound to the β-tubulin. The destabilization is thought to be associated with the conformational change of the tubulin dimers from the straight conformation in the MT lattice to a curved conformation. It remains under debate whether this transformation is directly related to the nucleotide state, or a consequence of the longitudinal or lateral contacts in the MT lattice. Here, we present large-scale atomistic simulations of short tubulin protofilaments with both nucleotide states, starting from both extreme conformations. Our simulations indicate that both interdimer and intradimer contacts in both GDP and GTP-bound tubulin dimers and protofilaments in solution bend. There are no observable differences between the mesoscopic properties of the contacts in GTP and GDP-bound tubulin or the intradime and interdimer interfaces.  相似文献   

6.
Incorporation of GDP-tubulin during elongation of microtubules in vitro   总被引:1,自引:0,他引:1  
Removal of GDP from tubulin E-site is not obligatory for the in vitro assembly of microtubule protein in 0.5 mM GMPPCP. This assembly, which is significantly enhanced by glycerol, produces microtubules of normal morphology and with normal composition of microtubule-associated proteins (MAPs). [3H]-GDP initially present at the E-site is shown to be incorporated directly into microtubules during assembly; this incorporation, maximally 60% of the assembled polymer, is dependent upon MAPs. These results are consistent with oligomeric species composed principally of GDP-tubulin plus MAPs, being incorporated directly into microtubules. The finding that stoichiometric GTP-tubulin formation is not an essential prerequisite for microtubule assembly may have important implications for the energetics of microtubule formation.  相似文献   

7.
The arrangement of C-tubule protofilaments was studied in basal bodies of respiratory epithelial cilia using tannic acid staining techniques. At the proximal end of the basal body, the C tubule consisted of 10 protofilaments arranged analogously to the 10 protofilaments of the B tubule. In the region of the basal foot, 5 of the C protofilaments sequentially terminated. First, the C10 and C9 filaments terminated. Then the C1 and C8 filaments terminated, and finally the C7 filament terminated leaving a curved sheet of 5 filaments C2-C6 coursing through the distal third of the basal body. This study validates previous suggestions that the C tubule is incomplete distally, and this study clearly demonstrates the extent and consistency of this incompleteness. This morphological study also raises again the question of the function of the C tubules of basal bodies in light of both the incomplete nature of the C tubule and the apparent minor role of the C tubule in providing attachment sites for the basal foot and the alar sheets.  相似文献   

8.
Chinese hamster ovary (CHO) cell mutants resistant to the cytotoxic effects of taxol and requiring the drug for normal growth were isolated in a single step. One of these mutant cell lines, Tax-18, fails to divide in the absence of taxol; instead, the cells become larger, rounder, flatter, and multinucleated. Analysis by flow cytometry indicates that during taxol deprivation there is an accumulation of cells in G2 + M phase but that the cells are able to leak through the block in the absence of cell division and further increase their DNA content beyond the tetraploid amount. This interpretation is confirmed by karyotype analysis and by time-lapse studies that show cells rounded for mitosis two to five times longer than in wild-type cultures or in Tax-18 cultures grown in taxol. The cells finally attempt to undergo cytokinesis, fail, and spread out again, but as larger cells than before. Tax-18 has a normal growth rate and morphology when grown in taxol even at concentrations three to five times below the selecting concentration of the drug. The cells, however, have increased sensitivity to microtubule-disrupting drugs such as colcemid, griseofulvin, and D2O. The mutation for taxol auxotrophy behaves recessively in somatic cell hybridization experiments, and the phenotypic reversion rate is approximately 10(-5) in a nonmutagenized population. Both alpha- and beta-tubulin are present in apparently normal amounts and with normal electrophoretic mobilities on two-dimensional gels. The results suggest that Tax-18 lacks a factor necessary for mitosis and that taxol may be able to substitute for this factor.  相似文献   

9.
Filamentous amyloid aggregates are central to the pathology of Alzheimer's disease. We use all-atom molecular dynamics (MD) simulations with explicit solvent and multiple force fields to probe the structural stability and the conformational dynamics of several models of Alzheimer's beta-amyloid fibril structures, for both wild-type and mutated amino acid sequences. The structural models are based on recent solid state NMR data. In these models, the peptides form in-register parallel beta-sheets along the fibril axis, with dimers of two U-shaped peptides located in layers normal to the fibril axis. Four different topologies are explored for stacking the beta-strand regions against each other to form a hydrophobic core. Our MD results suggest that all four NMR-based models are structurally stable, and we find good agreement with dihedral angles estimated from solid-state NMR experiments. Asp23 and Lys28 form buried salt-bridges, resulting in an alternating arrangement of the negatively and positively charged residues along the fibril axis that is reminiscent of a one-dimensional ionic crystal. Interior water molecules are solvating the buried salt-bridges. Based on data from NMR measurements and MD simulations of short amyloid fibrils, we constructed structural models of long fibrils. Calculated X-ray fiber diffraction patterns show the characteristics of packed beta-sheets seen in experiments, and suggest new experiments that could discriminate between various fibril topologies.  相似文献   

10.
Assembly, bundling and stability of FtsZ protofilaments are important for the formation and functioning of the cytokinetic Z-ring during bacterial division. We found that the bundling of FtsZ protofilaments decreased strongly with increasing pH from 6.0 to 7.9, while the assembly of FtsZ monomers did not decrease considerably. In addition, the disassembly of FtsZ protofilaments was strongly suppressed at pH 6.0 as compared to the elevated pHs. The far-UV circular dichroism spectra of the native FtsZ and the tryptophan emission spectra of mutated FtsZ (Y371W) did not change by increasing pH from 6 to 7.9 indicating that the structure of FtsZ was not altered significantly. Further, the inhibition of bundling of FtsZ protofilaments predominantly, and the inhibition of assembly to a lesser extent by salt indicated that electrostatic interactions are important for the assembly and bundling of FtsZ protofilaments. These observations are supported by the results of computational docking of Escherichia coli dimer structure. The results suggest that the basic intracellular pH (7.4-7.8) of E. coli may play a role in regulating the assembly dynamics of FtsZ in the Z-ring by reducing protofilament stability and bundling in bacterial cytoplasm.  相似文献   

11.
Tubulin from bovine brain was polymerized in vitro using a variety of assembly conditions. Many of the formed microtubules were shown to contain 14 wall protofilaments. The number of microtubules containing 14 protofilaments increased with consecutive repetitions of cold-dissociation followed by reassembly in vitro.  相似文献   

12.
Löwe J  Amos LA 《The EMBO journal》1999,18(9):2364-2371
The 40 kDa protein FtsZ is a major septum-forming component of bacterial cell division. Early during cytokinesis at midcell, FtsZ forms a cytokinetic ring that constricts as septation progresses. FtsZ has a high propensity to polymerize in vitro into various structures, including sheets and filaments, in a GTP-dependent manner. Together with limited sequence homology, the occurrence of the tubulin signature motif in FtsZ and a similar three-dimensional structure, this leads to the conclusion that FtsZ is the bacterial tubulin homologue. We have polymerized FtsZ1 from Methanococcus jannaschii in the presence of millimolar concentrations of Ca2+ ions to produce two-dimensional crystals of plane group P2221. Most of the protein precipitates and forms filaments approximately 23.0 nm in diameter. A three-dimensional reconstruction of tilted micrographs of FtsZ sheets in negative stain between 0 and 60 degrees shows protofilaments of FtsZ running along the sheet axis. Pairs of parallel FtsZ protofilaments associate in an antiparallel fashion to form a two-dimensional sheet. The antiparallel arrangement is believed to generate flat sheets instead of the curved filaments seen in other FtsZ polymers. Together with the subunit spacing along the protofilament axis, a fitting of the FtsZ crystal structure into the reconstruction suggests a protofilamant structure very similar to that of tubulin protofilaments.  相似文献   

13.
Taxol was originally isolated from the yew Taxus brevifolia. Because taxol inhibits the depolymerization of microtubules, the presence of a self-resistance mechanism in Taxus spp. was hypothesized. The cloning of the cDNA for alpha and beta tubulins from Taxus cuspidata and those from the human embryonic kidney cell line HEK293T revealed that the 26Asp, 359Arg, and 361Leu residues in the human beta tubulin, which are important for taxol binding, were replaced with Glu, Trp, and Met in the beta tubulin of T. cuspidata, respectively. The microtubule assembly of the recombinant alpha and beta tubulins was monitored turbidimetrically, and the results clearly demonstrated that the microtubule from T. cuspidata is less sensitive to taxol than that from HEK293T cells. The Taxus microtubule composed of the wild-type alpha tubulin and the beta tubulin with the E26D mutation restored the sensitivity to taxol. We thus postulated that the mutation identified in the beta tubulin of T. cuspidata plays a role in the self-resistance of this species against taxol.  相似文献   

14.
15.
16.
17.
Amyloid fibrils underlying various serious amyloidoses including Alzheimer and prion diseases form characteristic deposits in which linear fibrils with an unbranched and rigid morphology associate laterally or radially, e.g. radial senile amyloid plaques of amyloid beta. To clarify the formation of these high order amyloid deposits, studying the rheology is important. A 22-residue K3 peptide fragment of beta2-microglobulin, a protein responsible for dialysis-related amyloidosis, forms long and homogeneous protofilament-like fibrils in 20% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl (pH approximately 2). Here, using circular dichroism and linear dichroism, we observed the flow-induced alignment of fibrils. Analysis of far- and near-UV linear dichroism spectra suggested that both the net pi-pi* transition moment of the backbone carbonyl group and L(b) transition moment of the Tyr(26) side chain are oriented in parallel to the fibril axis, revealing the structural details of amyloid protofilaments. Moreover, the intensities of flow-induced circular dichroism or linear dichroism signals depended critically on the length and type of fibrils, suggesting that they are useful for detecting and characterizing amyloid fibrils.  相似文献   

18.
Upon subjecting isolated outer doublets from S. purpuratus sperm tails to heat and increasing concentrations of detergent Sarkosyl (SLS), the microtubules are partially solubilized. Electron microscopy shows that the B tubule is solubilized at 37 °C or low SLS concentrations; solubilization of tubule A requires higher temperature (60 °C). High concentrations of SLS solubilize parts of the A tubule until only a detergent-resistant fraction composed of three protofilaments is left. Solubilized and unsolubilized fractions contain the same two major protein components (α and β) as do the untreated outer doublets when examined by gel electrophoresis. The ratio of the two components throughout the extraction sequences remains 1:1 ± 0.1 as determined on the basis of dye binding.  相似文献   

19.
Santra MK  Dasgupta D  Panda D 《Proteins》2005,61(4):1101-1110
The assembly and bundling of FtsZ protofilaments play an important role during bacterial cell division. Deuterium oxide (D2O) is known to have strong stabilization effects on the assembly dynamics of several proteins including tubulin, a homologue of FtsZ. Here, we found that D2O enhanced the light-scattering intensity of the assembly reaction, increased sedimentable polymer mass, and induced bundling of FtsZ protofilaments. D2O also increased the stability of FtsZ polymers under challenged GTP conditions and suppressed dilution-induced disassembly of protofilaments. D2O enhances the assembly parameters of FtsZ and microtubules albeit differently. For example, D2O induced bundling of FtsZ protofilaments, whereas it did not induce bundling of microtubules in vitro. In addition, D2O strongly suppressed the GTP hydrolysis rate of microtubules, but it had no effect on the initial rate of GTP hydrolysis of the FtsZ assembly. D2O (80%) also increased the helical content of FtsZ by 25% compared to the helical content of FtsZ in aqueous buffer. D2O was shown to reduce the binding of 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) to tubulin. In contrast, we found that D2O strongly enhanced the binding of bis-ANS to FtsZ. The results indicated that D2O promotes assembly and bundling of FtsZ protofilaments by increasing hydrophobic interactions between the protofilaments. The results also suggest that the phosphate release rather than the on-site GTP hydrolysis is the rate-limiting step of the GTP turnover reaction.  相似文献   

20.
Mobility of taxol inside microtubules was investigated using fluorescence recovery after photobleaching on flow-aligned bundles. Bundles were made of microtubules with either GMPCPP or GTP at the exchangeable site on the tubulin dimer. Recovery times were sensitive to bundle thickness and packing, indicating that taxol molecules are able to move laterally through the bundle. The density of open binding sites along a microtubule was varied by controlling the concentration of taxol in solution for GMPCPP samples. With >63% sites occupied, recovery times were independent of taxol concentration and, therefore, inversely proportional to the microscopic dissociation rate, k(off). It was found that 10k(off)(GMPCPP) approximately equal k(off)(GTP), consistent with, but not fully accounting for, the difference in equilibrium constants for taxol on GMPCPP and GTP microtubules. With <63% sites occupied, recovery times decreased as approximately [Tax](-1/5) for both types of microtubules. We conclude that the diffusion of taxol inside the microtubule bundle is hindered by rebinding events when open sites are within approximately 7 nm of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号