共查询到20条相似文献,搜索用时 0 毫秒
1.
Selectivity and gating of the type L potassium channel in mouse lymphocytes 总被引:4,自引:4,他引:4 下载免费PDF全文
Type l voltage-gated K+ channels in murine lymphocytes were studied under voltage clamp in cell-attached patches and in the whole-cell configuration. The kinetics of activation of whole-cell currents during depolarizing pulses could be fit by a single exponential after an initial delay. Deactivation upon repolarization of both macroscopic and microscopic currents was mono-exponential, except in Rb-Ringer or Cs-Ringer solution in which tail currents often displayed "hooks," wherein the current first increased or remained constant before decaying. In some cells type l currents were contaminated by a small component due to type n K+ channels, which deactivate approximately 10 times slower than type l channels. Both macroscopic and single channel currents could be dissected either kinetically or pharmacologically into these two K+ channel types. The ionic selectivity and conductance of type l channels were studied by varying the internal and external permeant ion. With 160 mM K+ in the cell, the relative permeability calculated from the reversal potential with the Goldman-Hodgkin-Katz equation was K+ (identical to 1.0) greater than Rb+ (0.76) greater than NH4+ = Cs+ (0.12) much greater than Na+ (less than 0.004). Measured 30 mV negative to the reversal potential, the relative conductance sequence was quite different: NH4+ (1.5) greater than K+ (identical to 1.0) greater than Rb+ (0.5) greater than Cs+ (0.06) much greater than Na+, Li+, TMA+ (unmeasurable). Single channel current rectification resembled that of the whole-cell instantaneous I-V relation. Anomalous mole-fraction dependence of the relative permeability PNH4/PK was observed in NH4(+)-K+ mixtures, indicating that the type l K+ channel is a multi-ion pore. Compared with other K+ channels, lymphocyte type l K+ channels are most similar to "g12" channels in myelinated nerve. 相似文献
2.
Metal ions affect ion channels either by blocking the current or by modifying the gating. In the present review we analyse the effects on the gating of voltage-gated channels. We show that the effects can be understood in terms of three main mechanisms. Mechanism A assumes screening of fixed surface charges. Mechanism B assumes binding to fixed charges and an associated electrostatic modification of the voltage sensor. Mechanism C assumes binding and an associated non electrostatic modification of the gating. To quantify the non-electrostatic effect we introduced a slowing factor, A. A fourth mechanism (D) is binding to the pore with a consequent pore block, and could be a special case of Mechanisms B or C. A further classification considers whether the metal ion affects a single site or multiple sites. Analysing the properties of these mechanisms and the vast number of studies of metal ion effects on different voltage-gated on channels we conclude that group 2 ions mainly affect channels by classical screening (a version of Mechanism A). The transition metals and the Zn group ions mainly bind to the channel and electrostatically modify the gating (Mechanism B), causing larger shifts of the steady-state parameters than the group 2 ions, but also different shifts of activation and deactivation curves. The lanthanides mainly bind to the channel and both electrostatically and non-electrostatically modify the gating (Mechanisms B and C). With the exception of the ether-à-go-go-like channels, most channel types show remarkably similar ion-specific sensitivities. 相似文献
3.
Horia Vais J. Kevin Foskett Ghanim Ullah John E. Pearson Don-On Daniel Mak 《The Journal of general physiology》2012,140(6):697-716
The ubiquitous inositol 1,4,5-trisphosphate (InsP3) receptor
(InsP3R) Ca2+ release channel plays a central
role in the generation and modulation of intracellular Ca2+
signals, and is intricately regulated by multiple mechanisms including
cytoplasmic ligand (InsP3, free Ca2+, free
ATP4−) binding, posttranslational modifications, and
interactions with cytoplasmic and endoplasmic reticulum (ER) luminal proteins.
However, regulation of InsP3R channel activity by free
Ca2+ in the ER lumen
([Ca2+]ER) remains poorly understood because of
limitations of Ca2+ flux measurements and imaging techniques.
Here, we used nuclear patch-clamp experiments in excised luminal-side-out
configuration with perfusion solution exchange to study the effects of
[Ca2+]ER on homotetrameric rat type 3
InsP3R channel activity. In optimal
[Ca2+]i and subsaturating [InsP3],
jumps of [Ca2+]ER from 70 nM to 300 µM
reduced channel activity significantly. This inhibition was abrogated by
saturating InsP3 but restored when
[Ca2+]ER was raised to 1.1 mM. In suboptimal
[Ca2+]i, jumps of
[Ca2+]ER (70 nM to 300 µM) enhanced
channel activity. Thus, [Ca2+]ER effects on channel
activity exhibited a biphasic dependence on
[Ca2+]i. In addition, the effect of high
[Ca2+]ER was attenuated when a voltage was
applied to oppose Ca2+ flux through the channel. These
observations can be accounted for by Ca2+ flux driven through
the open InsP3R channel by [Ca2+]ER,
raising local [Ca2+]i around the channel to
regulate its activity through its cytoplasmic regulatory
Ca2+-binding sites. Importantly,
[Ca2+]ER regulation of InsP3R
channel activity depended on cytoplasmic Ca2+-buffering
conditions: it was more pronounced when [Ca2+]i was
weakly buffered but completely abolished in strong
Ca2+-buffering conditions. With strong cytoplasmic buffering
and Ca2+ flux sufficiently reduced by applied voltage, both
activation and inhibition of InsP3R channel gating by physiological
levels of [Ca2+]ER were completely abolished.
Collectively, these results rule out Ca2+ regulation of
channel activity by direct binding to the luminal aspect of the channel. 相似文献
4.
Based on the structure of the KcsA potassium channel, the Shaker K+ channel is thought to have, near the middle of the membrane, a cavity that can be occupied by a permeant or a blocking cation. We have studied the interaction between cations in the cavity and the activation gate of the channel, using a set of monovalent cations together with Shaker mutants that modify the structure of the cavity. Our results show that reducing the size of the side chain at position 470 makes it possible for the mutant channel, unlike native Shaker, to close with tetraethylammonium (TEA+) or the long-chain TEA-derivative C10+ trapped inside the channel. Neither I470 mutants nor Shaker can close when N-methyl-glucamine (NMG+) is in the channel, even though this ion is smaller than C10+. Apparently, the carbohydrate side chain of NMG+ prevents gate closing. Gating currents recorded from Shaker and I470C were measured in the presence of different intracellular cations to further analyze the interaction of cations with the gate. Our results suggest that the cavity in Shaker is so small that even permeant cations like Rb+ or Cs+ must leave the cavity before the channel gate can close. 相似文献
5.
We studied the effect of monovalent thallium ion (Tl(+)) on the gating of single Kir2.1 channels, which open and close spontaneously at a constant membrane potential. In cell-attached recordings of single-channel inward current, changing the external permeant ion from K(+) to Tl(+) decreases the mean open-time by approximately 20-fold. Furthermore, the channel resides predominantly at a subconductance level, which results from a slow decay (tau = 2.7 ms at -100 mV) from the fully open level immediately following channel opening. Mutation of a pore-lining cysteine (C169) to valine abolishes the slow decay and subconductance level, and single-channel recordings from channels formed by tandem tetramers containing one to three C169V mutant subunits indicate that Tl(+) must interact with at least three C169 residues to induce these effects. However, the C169V mutation does not alter the single-channel closing kinetics of Tl(+) current. These results suggest that Tl(+) ions change the conformation of the ion conduction pathway during permeation and alter gating by two distinct mechanisms. First, they interact with the thiolate groups of C169 lining the cavity to induce conformational changes of the ion passageway, and thereby produce a slow decay of single-channel current and a dominant subconductance state. Second, they interact more strongly than K(+) with the main chain carbonyl oxygens lining the selectivity filter to destabilize the open state of the channel and, thus, alter the open/close kinetics of gating. In addition to altering gating, Tl(+) greatly diminishes Ba(2+) block. The unblocking rate of Ba(2+) is increased by >22-fold when the external permeant ion is switched from K(+) to Tl(+) regardless of the direction of Ba(2+) exit. This effect cannot be explained solely by ion-ion interactions, but is consistent with the notion that Tl(+) induces conformational changes in the selectivity filter. 相似文献
6.
Single ion channel currents can only provide indirect information on channel molecular events (except for timing). In contrast, the electric displacement currents associated with channel gating, termed gating currents, can provide direct information regarding the channel molecule's conformational changes. However, thus far gating currents have been measured only from ensembles of numerous stochastically activated channels and therefore the information they provide is limited. This work presents, for the first time, measurements of gating currents from a single channel molecule. Averaging close to 8000 pre-open currents, aligned to the single channel opening time, enabled the detection of single channel gating currents with a resolution of 2 electron charges. The measured charge displacements show: 1) a slow component, approximately 2 fA above baseline level, assumed to represent stochastic conformational changes, and 2) transients, the most significant of which occur 1.1 and 0.3 ms before channel opening. The transients most likely represent apparent deterministic stages in the gating process. The largest transient current peak was 5.1 +/- 1.6 fA and the total equivalent charge transported across the membrane was 4.7 +/- 2.5 electron charges. This data is unique also in that it presents monitoring of the behavior of a single, well-defined macromolecule. 相似文献
7.
Modification of sodium and potassium channel gating kinetics by ether and halothane 总被引:7,自引:1,他引:7 下载免费PDF全文
The effect of ether and halothane on the kinetics of sodium and potassium currents were investigated in the crayfish giant axon. Both general anesthetics produced a reversible, dose-dependent speeding up of sodium current inactivation at all membrane potentials, with no change in the phase of the currents. Double-pulse inactivation experiments with ether also showed faster inactivation, but the rate of recovery from inactivation at negative potentials was not affected. Ether shifted the midpoint of the steady-state fast inactivation curve in the hyperpolarizing direction and made the curve steeper. The activation of potassium currents was faster with ether present, with no change in the voltage dependence of steady-state potassium currents. Ether and halothane are known to perturb the structure of lipid bilayer membranes; the alterations in sodium and potassium channel gating kinetics are consistent with the hypothesis that the rates of the gating processes of the channels can be affected by the state of the lipids surrounding the channels, but a direct effect of ether and halothane on the protein part of the channels cannot be ruled out. Ether did not affect the capacitance of the axon membrane. 相似文献
8.
C Y Lee 《FEBS letters》1992,311(2):81-84
This paper proposes a detailed gating mechanism for the N-methyl-D-aspartate (NMDA) channel. In the NMDAR1 subunit, the signal of agonist binding may be carried from Y456 to W590 through an electron transport chain, including W480 which could be the glycine modulatory site. The channel's opening may arise from repulsion between negatively charged W590s, analogous to W435s of the Shaker K+ channel. The cyclic nucleotide-gated channels may be activated by a similar mechanism, but the opening of nicotinic acetylcholine receptor (nAChR) channels is likely to be initiated by the formation of tyrosine radicals. The role of disulfide-bonded cysteines in the redox modulation can also be explained. 相似文献
9.
A physical model of potassium channel activation: from energy landscape to gating kinetics 下载免费PDF全文
We have developed a method for rapidly computing gating currents from a multiparticle ion channel model. Our approach is appropriate for energy landscapes that can be characterized by a network of well-defined activation pathways with barriers. To illustrate, we represented the gating apparatus of a channel subunit by an interacting pair of charged gating particles. Each particle underwent spatial diffusion along a bistable potential of mean force, with electrostatic forces coupling the two trajectories. After a step in membrane potential, relaxation of the smaller barrier charge led to a time-dependent reduction in the activation barrier of the principal gate charge. The resulting gating current exhibited a rising phase similar to that measured in voltage-dependent ion channels. Reduction of the two-dimensional diffusion landscape to a circular Markov model with four states accurately preserved the time course of gating currents on the slow timescale. A composite system containing four subunits leading to a concerted opening transition was used to fit a series of gating currents from the Shaker potassium channel. We end with a critique of the model with regard to current views on potassium channel structure. 相似文献
10.
Qiulin Tan 《FEBS letters》2010,584(8):1602-1608
The chlorella virus-encoded Kcv can form a homo-tetrameric potassium channel in lipid membranes. This miniature peptide can be synthesized in vitro, and the tetramer purified from the SDS-polyacrylamide gel retains the K+ channel functionality. Combining this capability with the mass-tagging method, we propose a simple, straightforward approach that can generically manipulate individual subunits in the tetramer, thereby enabling the detection of contribution from individual subunits to the channel functions. Using this approach, we showed that the structural change in the selectivity filter from only one subunit is sufficient to cause permanent channel inactivation (“all-or-none” mechanism), whereas the mutation near the extracellular entrance additively modifies the ion permeation with the number of mutant subunits in the tetramer (“additive” mechanism). 相似文献
11.
G L Millhauser 《Biophysical journal》1990,57(4):857-864
Reptation theory is a highly successful approach for describing polymer dynamics in entangled systems. In turn, this molecular process is the basis of viscoelasticity. We apply a modified version of reptation dynamics to develop an actual physical model of ion channel gating. We show that at times longer than microseconds these dynamics predict an alpha-helix-screw motion for the amphipathic protein segment that partially lines the channel pore. Such motion has been implicated in several molecular mechanics studies of both voltage-gated and transmitter-gated channels. The experimental probability density function (pdf) for this process follows t-3/2 which has been observed in several experimental systems. Reptation theory predicts that channel gating will occur on the millisecond time scale and this is consistent with experimental results from single-channel recording. We examine the consequences of reptation over random barriers and we show that, to first order, the pdf remains unchanged. In the case of a charged helix undergoing reptation in the presence of a transmembrane potential we show that the tail of the pdf will be exponential. We provide a list of practical experimental predictions to test the validity of this physical theory. 相似文献
12.
Zinc accumulates in the synaptic vesicles of certain glutamatergic forebrain neurons and modulates neuronal excitability and synaptic plasticity by multiple poorly understood mechanisms. Zinc directly inhibits NMDA-sensitive glutamate-gated channels by two separate mechanisms: high-affinity binding to N-terminal domains of GluN2A subunits reduces channel open probability, and low-affinity voltage-dependent binding to pore-lining residues blocks the channel. Insight into the high-affinity allosteric effect has been hampered by the receptor's complex gating; multiple, sometimes coupled, modulatory mechanisms; and practical difficulties in avoiding transient block by residual Mg2+. To sidestep these challenges, we examined how nanomolar zinc concentrations changed the gating kinetics of individual block-resistant receptors. We found that block-insensitive channels had lower intrinsic open probabilities but retained high sensitivity to zinc inhibition. Binding of zinc to these receptors resulted in longer closures and shorter openings within bursts of activity but had no effect on interburst intervals. Based on kinetic modeling of these data, we conclude that zinc-bound receptors have higher energy barriers to opening and less stable open states. We tested this model for its ability to predict zinc-dependent changes in macroscopic responses and to infer the impact of nanomolar zinc concentrations on synaptic currents mediated by 2A-type NMDA receptors. 相似文献
13.
Khan RN Martinac B Madsen BW Milne RK Yeo GF Edeson RO 《Mathematical biosciences》2005,193(2):139-158
Patch clamp data from the large conductance mechanosensitive channel (MscL) in E. coli was studied with the aim of developing a strategy for statistical analysis based on hidden Markov models (HMMs) and determining the number of conductance levels of the channel, together with mean current, mean dwell time and equilibrium probability of occupancy for each level. The models incorporated state-dependent white noise and moving average adjustment for filtering, with maximum likelihood parameter estimates obtained using an EM (expectation-maximisation) based iteration. Adjustment for filtering was included as it could be expected that the electronic filter used in recording would have a major effect on obviously brief intermediate conductance level sojourns. Preliminary data analysis revealed that the brevity of intermediate level sojourns caused difficulties in assignment of data points to levels as a result of over-estimation of noise variances. When reasonable constraints were placed on these variances using the better determined noise variances for the closed and fully open levels, idealisation anomalies were eliminated. Nevertheless, simulations suggested that mean sojourn times for the intermediate levels were still considerably over-estimated, and that recording bandwidth was a major limitation; improved results were obtained with higher bandwidth data (10 kHz sampled at 25 kHz). The simplest model consistent with these data had four open conductance levels, intermediate levels being approximately 20%, 51% and 74% of fully open. The mean lifetime at the fully open level was about 1 ms; estimates for the three intermediate levels were 54-92 micros, probably still over-estimates. 相似文献
14.
15.
Recently, the structure of the Shaker channel Kv1.2 has been determined at a 2.9-angstroms resolution. This opens new possibilities in deciphering the mechanism underlying the function of voltage-gated potassium (Kv) channels. Molecular dynamics simulations of the channel, embedded in a membrane environment show that the channel is in its open state and that the gating charges carried by S4 are exposed to the solvent. The hydrated environment of S4 favors a local collapse of the electrostatic potential, which generates high electric-field gradients around the arginine gating charges. Comparison to experiments suggests furthermore that activation of the channel requires mainly a lateral displacement of S4. Overall, the results agree with the transporter model devised for Kv channels from electrophysiology experiments, and provide a possible pathway for the mechanistic response to membrane depolarization. 相似文献
16.
MthK is a calcium-gated, inwardly rectifying, prokaryotic potassium channel. Although little functional information is available for MthK, its high-resolution structure is used as a model for eukaryotic Ca(2+)-dependent potassium channels. Here we characterize in detail the main gating characteristics of MthK at the single-channel level with special focus on the mechanism of Ca(2+) activation. MthK has two distinct gating modes: slow gating affected mainly by Ca(2+) and fast gating affected by voltage. Millimolar Ca(2+) increases MthK open probability over 100-fold by mainly increasing the frequency of channel opening while leaving the opening durations unchanged. The Ca(2+) dose-response curve displays an unusually high Hill coefficient (n = approximately 8), suggesting strong coupling between Ca(2+) binding and channel opening. Depolarization affects both the fast gate by dramatically reducing the fast flickers, and to a lesser extent, the slow gate, by increasing MthK open probability. We were able to capture the mechanistic features of MthK with a modified MWC model. 相似文献
17.
《The Journal of general physiology》1994,104(4):675-692
We have examined the actions of Zn2+ ions on Shaker K channels. We found that low (100 microM) concentrations of Zn2+ produced a substantial (approximately three-fold) slowing of the kinetics of macroscopic activation and inactivation. Channel deactivation was much less affected. These results were obtained in the presence of 5 mM Mg2+ and 4 mM Ca2+ in the external solution and so are unlikely to be due to modification of membrane surface charges. Furthermore, the action of 100 microM Zn2+ on activation was equivalent to a 70-mV reduction of a negative surface potential whereas the effects on deactivation would require a 15-mV increase in surface potential. External H+ ions reduced the Zn-induced slowing of macroscopic activation with an apparent pK of 7.3. Treatment of Shaker K channels with the amino group reagent, trinitrobenzene sulfonic acid (TNBS), substantially reduced the effects of Zn2+. All these results are qualitatively similar to the actions of Zn2+ on squid K channels, indicating that the binding site may be a common motif in potassium channels. Studies of single Shaker channel properties showed that Zn2+ ions had little or no effect on the open channel current level or on the open channel lifetime. Rather, Zn2+ substantially delayed the time to first channel opening. Thus, K channels appear to contain a site to which divalent cations bind and in so doing act to slow one or more of the rate constants controlling transitions among closed conformational states of the channel. 相似文献
18.
Position of the transmembrane aromatic residues of the KirBac1.1 potassium channel shifts from an even distribution in the closed state toward the membrane/solute interface in the open state model. This is the first example of an integral membrane protein making use of the observed preference for transmembrane aromatic residues to reside at the interfaces. The process of aromatic localization is proposed as a means of directing and stabilizing structural changes during conformational transitions within the transmembrane region of integral membrane proteins. All-atom molecular dynamics simulations of the open and closed conformers in a membrane environment have been carried out to take account of the interactions between the aromatic residues and the lipids, which may be involved in the conformational change, e.g., the gating of the channel. 相似文献
19.
F G Ball R McGee M S Sansom 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1989,236(1282):29-52
Analysis of mean dwell-times as a function of the number of channel openings elapsed since a stepwise perturbation in ion-channel kinetics is shown to provide information concerning the topology of the underlying gating mechanism. The difference between the post-perturbation mean dwell-time and the corresponding equilibrium mean is shown to decay as the sum of Ng-1 geometric terms in k, the number of openings since the perturbation, where Ng is the minimum number of gateway states in the channel gating mechanism. The method is illustrated by consideration of various simple gating schemes. A modification of the method accommodating the presence of channel inactivation or desensitization is described. Application of the method to a delayed-rectifier type K+ channel of NG108-15 cells reveals that Ng greater than or equal to 2, consistent with a branched gating mechanism. 相似文献
20.
We analyzed voltage-dependent ion channel structure and conformational changes corresponding to channel gating. During the
gating, S4 segments, as well as other parts of the channel, undergo a set of conformational modifications. These changes are
accompanied by complicated movements of positive charges that are mostly located in the S4 segments. These charges electrostatically
interact with the ions passing through the channel. The interaction energy depends on the conformational state of the channel,
i.e., on the mutual positions of the permeant ions and these charges. Analyzing and making energetical estimations, we propose
a hypothesis: the closed state of the ion channel corresponds to the S4 position when electrostatic interaction between positively
charged groups of the S4 segments and permeant ions is strong enough to close the pathway for these ions. 相似文献