共查询到20条相似文献,搜索用时 140 毫秒
1.
The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (gwv) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of gwv to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (Kleaf), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that Kleaf was correlated with the hydraulic conductance of large longitudinal veins (Klv, r2 = 0.81), but was not related to Kroot (r2 = 0.01). Stomatal sensitivity to D was correlated with Kleaf relative to total leaf area (r2 = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an ‘apparent feedforward’ response. For these individuals, E began to decline at lower values of D in plants with low Kroot (r2 = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand. 相似文献
2.
P. J. TEMPLE 《Plant, cell & environment》1986,9(4):315-321
Abstract Stomatal conductance and transpiration were measured on normally-irrigated (NI) and water-stressed (WS) field-grown cotton (Gossypium hirsutum L.) exposed throughout the growing season to a gradient of ozone (O3) concentrations. Environmental conditions during the growing season strongly affected stomatal responses and yield reductions due to O3 exposure. Maximum stomatal conductance and transpiration decreased with increased O3 concentration both in NI and WS treatments. Maximum conductance in severely O3-stressed plants averaged 30% lower than charcoal-filtered (control) plants, but maximum transpiration was only 17% lower. Conductance in WS plots averaged 22% lower than in NI plots but transpiration rates were the same in both treatments. Yield reductions induced by O3 were highly correlated (r2= 0.84) with daily transpiration. Stomata of O3-stressed plants opened and closed at the same rate as control plants in response to changes in light intensity, suggesting that the mechanism of stomatal movement had not been impaired by exposure to O3. Reductions in conductance and transpiration in O3-stressed plants were attributed to inhibition of photosynthesis by O3, leading to accumulation of CO2 in intercellular spaces. 相似文献
3.
Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming 总被引:1,自引:0,他引:1 下载免费PDF全文
Renée M. Marchin Alice A. Broadhead Laura E. Bostic Robert R. Dunn William A. Hoffmann 《Plant, cell & environment》2016,39(10):2221-2234
Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9–5.1 °C and increased VPD of 0.5–1.3 kPa on transpiration and stomatal conductance (gs) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring‐porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short‐term stomatal responses to VPD may not be representative of long‐term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption. 相似文献
4.
Stomatal response to humidity in sugarcane and soybean: effect of vapour pressure difference on the kinetics of the blue light response 总被引:5,自引:2,他引:5
Abstract. The effect of atmospheric humidity on the kinetics of stomatal responses was quantified in gas exchange experiments using sugarcane ( Saccharum spp. hybrid) and soybean ( Glycine max ). Pulses of blue light were used to elicit pulses of stomatal conductance that were mediated by the specific blue light response of guard cells. Kinetic parameters of the conductance response were more closely related to leaf-air vapour pressure difference (VPD) than to relative humidity or transpiration. Increasing VPD significantly accelerated stomatal opening in both sugarcane and soybean, despite an approximately five-fold faster response in sugarcane. In contrast, the kinetics of stomatal recovery (closure) following the pulse were similar in the two species. Acceleration of opening by high VPD was observed even under conditions where soybean exhibited a feedforward response of decreasing transpiration (E) with increasing evaporative demand (VPD). This result suggests that epidermal, rather than bulk leaf, water status mediates the VPD effect on stomatal kinetics. The data are consistent with the hypothesis that increased cpidermal water loss at high VPD decreases the backpressure exerted by neighbouring cells on guard cells. allowing more rapid stomatal opening per unit of guard cell metabolic response to blue light. 相似文献
5.
Stomatal responses to humidity in isolated epidermes 总被引:1,自引:0,他引:1
The ability of guard cells to hydrate and dehydrate from the surrounding air was investigated using isolated epidermes of Tradescantia pallida and Vicia faba . Stomata were found to respond to the water vapour pressure on the outside and inside of the epidermis, but the response was more sensitive to the inside vapour pressure, and occurred in the presence or absence of living, turgid epidermal cells. Experiments using helium–oxygen air showed that guard cells hydrated and dehydrated entirely from water vapour, suggesting that there was no significant transfer of water from the epidermal tissue to the guard cells. The stomatal aperture achieved at any given vapour pressure was shown to be consistent with water potential equilibrium between the guard cells and the air near the bottom of the stomatal pore, and water vapour exchange through the external cuticle appeared to be unimportant for the responses. Although stomatal responses to humidity in isolated epidermes are the result of water potential equilibrium between the guard cells and the air near the bottom of the stomatal pore, stomatal responses to humidity in leaves are unlikely to be the result of a similar equilibrium. 相似文献
6.
Responses of abaxial and adaxial stomata of Populus trichocarpa Torr. & Gray. × P. deltoides Bartr. (ex Marsh.) cv. Unal to incident light, sudden darkening and leaf excision in the light and in the dark were studied on 5-year-old trees in the field using diffusion porometry. Stomatal closure in the dark was found to be incomplete in most cases studies. Stomata closed after leaf excision in the dark within 90 min. Stomatal closure after darkening of an entire tree or an entire branch (white the rest of the tree was in the light) was slower, and complete stomatal closure was noticed only for adaxial stomata after 3 h. Adaxial stomata were more reactive and sensitive than abaxial stomata to sudden darkening and leaf excision in the light and the dark. In all treatments, stomatal response was more responsive in mature leaves than in young, still expanding leaves. 相似文献
7.
8.
Stomatal and photosynthetic responses to shade in sorghum, soybean and eastern gamagrass 总被引:2,自引:0,他引:2
We studied photosynthetic and stomatal responses of grain sorghum ( Sorghum bicolor [L.] Moench cv. Pioneer 8500), soybean ( Glycine max L. cv. Flyer) and eastern gamagrass ( Tripsacum dactyloides L.) during experimental sun and shade periods simulating summer cloud cover. Leaf gas exchange measurements of field plants showed that short-term (5 min) shading of leaves to 300–400 μmol m−2 s−1 photosynthetic photon flux density reduced photosynthesis, leaf temperature, stomatal conductance, transpiration and water use efficiency and increased intercellular CO2 partial pressure. In all species, photosynthetic recovery was delayed when leaves were reilluminated, apparently by stomatal closure. The strongest stomatal response was in soybean. Photosynthetic recovery was studied further with soybeans grown indoors (maximum photosynthetic photon flux density 1 200 μmol m−2 s−1 ). Plants grown indoors had responses to shade similar to those of field plants, except for brief nonstomatal limitation immediately after reillumination. These responses indicated the importance of the light environment during leaf development on assimilation responses to variable light, and suggested different limitations on carbon assimilation in different parts of the soybean canopy. Photosynthetic oxygen evolution recovered immediately upon reillumination, indicating that the light reactions did not limit soybean photosynthetic recovery. While shade periods caused stomatal closure and reduced carbon gain and water loss in all species, the consequences for carbon gain/water loss were greatest in soybean. The occurrence of stomatal closure in all three species may arise from their shared phenologies and herbaceous growth forms. 相似文献
9.
To investigate the diurnal variation of stomatal sensitivity to CO2 , stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata , which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in p CO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low p CO2 . Stomata did not respond to a decreased p CO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal p CO2 , and suggest that in CAM species the diurnal variability in the responsiveness of stomata to p CO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low p CO2 , CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species. 相似文献
10.
Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves 下载免费PDF全文
Samuel C. V. Martins Scott A. M. McAdam Ross M. Deans Fábio M. DaMatta Tim J. Brodribb 《Plant, cell & environment》2016,39(3):694-705
Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas‐exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady‐state stomatal conductance (gs) to changes in VPD but the gs dynamics between steady‐states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms. 相似文献
11.
Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3 /C4 grassland 总被引:1,自引:0,他引:1
In the present study the response of stomatal conductance (gs) to increasing leaf‐to‐air vapour pressure difference (D) in early season C3 (Bromus japonicus) and late season C4 (Bothriochloa ischaemum) grasses grown in the field across a range of CO2 (200–550 µmol mol?1) was examined. Stomatal sensitivity to D was calculated as the slope of the response of gs to the natural log of externally manipulated D (dgs/dlnD). Increasing D and CO2 significantly reduced gs in both species. Increasing CO2 caused a significant decrease in stomatal sensitivity to D in Br. japonicus, but not in Bo. ischaemum. The decrease in stomatal sensitivity to D at high CO2 for Br. japonicus fit theoretical expectations of a hydraulic model of stomatal regulation, in which gs varies to maintain constant transpiration and leaf water potential. The weaker stomatal sensitivity to D in Bo. ischaemum suggested that stomatal regulation of leaf water potential was poor in this species, or that non‐hydraulic signals influenced guard cell behaviour. Photosynthesis (A) declined with increasing D in both species, but analyses of the ratio of intercellular to atmospheric CO2 (Ci/Ca) suggested that stomatal limitation of A occurred only in Br. japonicus. Rising CO2 had the greatest effect on gs and A in Br. japonicus at low D. In contrast, the strength of stomatal and photosynthetic responses to CO2 were not affected by D in Bo. ischaemum. Carbon and water dynamics in this grassland are dominated by a seasonal transition from C3 to C4 photosynthesis. Interspecific variation in the response of gs to D therefore has implications for predicting seasonal ecosystem responses to CO2. 相似文献
12.
Abstract The dynamic response of stomata to changes in atmospheric humidity was investigated in Fragaria × ananassa Duch., Picea engelmannii Parry, and Pseudotsuga menziesii (Mirb.) Franco; and the effect of water stress on this response was determined in Pseudotsuga menziesii. The plants were rotated through three regimes of ambient temperature and vapour pressure deficit: 35°C–3. 5kPa, 35°C–0. 5 kPa, and 20°C–1. 5kPa. Branch and leaflet conductance were measured with a steady-state porometer, first at ambient vapour pressure deficit and then at one of four treatment conditions achieved by increasing or decreasing vapour pressure within the porometer cuvette. All three species showed similar stomatal response: enhanced conductance at low vapour pressure deficit and depressed conductance at high vapour pressure deficit. Engelmann spruce was more sensitive than Douglas fir and strawberry. Plant water status significantly altered stomatal response to vapour pressure deficit. The relationship of conductance of xylem water potential was linear under ambient conditions but became curvilinear when conductance was measured above and below ambient vapour pressure deficit. Between ?0. 5 MPa and ?2. 0 MPa xylem water potential, the stomata were sensitive to vapour pressure deficit, but below ? 2. 0 MPa, the sensitivity decreased. 相似文献
13.
气孔是植物与大气环境进行气体交换的重要通道, 在调控植物碳水平衡方面发挥着重要作用。为探讨生境和植物类型对气孔形态特征的影响以及气孔对光强变化的响应格局在不同植物间和不同生境条件下的变异, 选取开阔生境和林下生境的5种蕨类植物和4种被子植物, 测定了它们的气孔形态特征和气孔导度对光强变化的响应。此外, 还收集了8篇文献中开阔和林下生境的45种蕨类植物和70种被子植物的气孔密度和气孔长度数据, 以增大样本量从而更好地探讨不同生境条件下蕨类和被子植物气孔密度及长度的变异格局, 并通过分析生境和植物类型对气孔形态特征的影响来推测生境和植物类型对气孔响应行为的可能影响。实验结果表明, 与林下植物相比, 开阔环境下的植物气孔密度更大, 气孔长度更小, 气孔对光强降低的响应更敏感; 但植物类型对气孔形态特征的影响以及对气孔响应光强的敏感程度的影响均不显著。对文献数据的分析表明, 生境和植物类型对气孔形态特征均有显著影响。考虑到气孔响应快慢与气孔形态特征密切相关, 与蕨类植物相比, 被子植物小而密的气孔可能为其更快地响应环境变化提供了基础。研究表明生境和植物类型对气孔响应行为均有显著影响。 相似文献
14.
Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit 总被引:12,自引:8,他引:12
R. Oren J. S. Sperry G. G. Katul D. E. Pataki B. E. Ewers N. Phillips & K. V. R. Schäfer 《Plant, cell & environment》1999,22(12):1515-1526
Responses of stomatal conductance (gs) to increasing vapour pressure deficit (D) generally follow an exponential decrease described equally well by several empirical functions. However, the magnitude of the decrease – the stomatal sensitivity – varies considerably both within and between species. Here we analysed data from a variety of sources employing both porometric and sap flux estimates of gs to evaluate the hypothesis that stomatal sensitivity is proportional to the magnitude of gs at low D ( ≤ 1 kPa). To test this relationship we used the function gs = gsref–m· lnD where m is the stomatal sensitivity and gsref = gs at D = 1 kPa. Regardless of species or methodology, m was highly correlated with gsref (average r2 = 0·75) with a slope of approximately 0·6. We demonstrate that this empirical slope is consistent with the theoretical slope derived from a simple hydraulic model that assumes stomatal regulation of leaf water potential. The theoretical slope is robust to deviations from underlying assumptions and variation in model parameters. The relationships within and among species are close to theoretical predictions, regardless of whether the analysis is based on porometric measurements of gs in relation to leaf-surface D (Ds), or on sap flux-based stomatal conductance of whole trees (GSi), or stand-level stomatal conductance (GS) in relation to D. Thus, individuals, species, and stands with high stomatal conductance at low D show a greater sensitivity to D, as required by the role of stomata in regulating leaf water potential. 相似文献
15.
Stomatal characteristics of ferns and angiosperms and their responses to changing light intensity at different habitats 总被引:1,自引:0,他引:1 下载免费PDF全文
《植物生态学报》2014,38(8):868
气孔是植物与大气环境进行气体交换的重要通道, 在调控植物碳水平衡方面发挥着重要作用。为探讨生境和植物类型对气孔形态特征的影响以及气孔对光强变化的响应格局在不同植物间和不同生境条件下的变异, 选取开阔生境和林下生境的5种蕨类植物和4种被子植物, 测定了它们的气孔形态特征和气孔导度对光强变化的响应。此外, 还收集了8篇文献中开阔和林下生境的45种蕨类植物和70种被子植物的气孔密度和气孔长度数据, 以增大样本量从而更好地探讨不同生境条件下蕨类和被子植物气孔密度及长度的变异格局, 并通过分析生境和植物类型对气孔形态特征的影响来推测生境和植物类型对气孔响应行为的可能影响。实验结果表明, 与林下植物相比, 开阔环境下的植物气孔密度更大, 气孔长度更小, 气孔对光强降低的响应更敏感; 但植物类型对气孔形态特征的影响以及对气孔响应光强的敏感程度的影响均不显著。对文献数据的分析表明, 生境和植物类型对气孔形态特征均有显著影响。考虑到气孔响应快慢与气孔形态特征密切相关, 与蕨类植物相比, 被子植物小而密的气孔可能为其更快地响应环境变化提供了基础。研究表明生境和植物类型对气孔响应行为均有显著影响。 相似文献
16.
Effects of carbon dioxide concentration on the interactive effects of temperature and water vapour on stomatal conductance in soybean 总被引:2,自引:1,他引:1
Soybeans were grown at three CO2 concentrations in outdoor growth chambers and at two concentrations in controlled-environment growth chambers to investigate the interactive effects of CO2, temperature and leaf-to-air vapour pressure difference (LAVPD) on stomatal conductance. The decline in stomatal conductance with CO2 was a function of both leaf temperature and LAVPD. In the field measurements, stomatal conductance was more sensitive to LAVPD at low CO2 at 30 °C but not at 35 °C. There was also a direct increase in conductance with temperature, which was greater at the two elevated carbon dioxide concentrations. Environmental growth chamber results showed that the relative stomatal sensitivity to LAVPD decreased with both leaf temperature and CO2. Measurements in the environmental growth chamber were also performed at the opposing CO2, and these experiments indicate that the stomatal sensitivity to LAVPD was determined more by growth CO2 than by measurement CO2. Two models that describe stomatal responses to LAVPD were compared with the outdoor data to evaluate whether these models described adequately the interactive effects of CO2, LAVPD and temperature. 相似文献
17.
James Michael Anderson 《Physiologia plantarum》1986,66(2):319-327
The release of photosynthate from leaf slices of soybean [ Glycine max (L.) Merr. cv. Ransom II], to a bathing medium was studied to ascertain how p -chloromercuribenzenesulfonic acid (PCMBS) can both stimulate and inhibit sucrose release. Soybean leaf slices released photosynthate to a bathing medium at a rate that was approximately linear with time. The photosynthate released was about 20% ionic and 80% non-ionic, and sucrose represented about 75% of the total. Removal of Ca2+ from the medium increased the rate of release of all fractions, but amino acid release showed the largest increase. Sucrose was released at a rate estimated to be about 20% of the normal transport rate in intact leaves. The rate of sucrose uptake from 5 m M sucrose into soybean leaf slices was optimum at pH 6.3, and the rate of sucrose release was lowest at the same pH. However, sucrose uptake was found to be insignificant during release experiments. Sucrose release, but not amino acid release, was inhibited 75% by 1 m M PCMBS.
The data support two components of sucrose release in leaves. The first is insensitive to the addition of PCMBS. This component probably represents leakage from phloem tissue. The second component is inhibited by PCMBS and probably represents release from the mesophyll. By comparing sucrose release from leaf slices of 12 different species of plants, 2 groups were found. In the first group, sucrose release was inhibited between 60 and 80% by PCMBS, and in the second group between 0% and 40%. The difference in the two groups can be explained by a relative difference in the size of the two components of sucrose release for each species. 相似文献
The data support two components of sucrose release in leaves. The first is insensitive to the addition of PCMBS. This component probably represents leakage from phloem tissue. The second component is inhibited by PCMBS and probably represents release from the mesophyll. By comparing sucrose release from leaf slices of 12 different species of plants, 2 groups were found. In the first group, sucrose release was inhibited between 60 and 80% by PCMBS, and in the second group between 0% and 40%. The difference in the two groups can be explained by a relative difference in the size of the two components of sucrose release for each species. 相似文献
18.
Stomatal numbers of soybean and response to water stress 总被引:2,自引:0,他引:2
B. R. Buttery C. S. Tan R. I. Buzzell J. D. Gaynor D. C. MacTavish 《Plant and Soil》1993,149(2):283-288
The relationship among stomatal density, photosynthetic rate, leaf conductance, plant growth, bean yield and kaempferol triglucoside (K9) in the leaves of soybean (Glycine max (L.) Merr.) was examined in two field tests. K9 in the leaves was associated with reduced stomatal density, reduced photosynthetic rate, reduced stomatal conductance, reduced plant weight and lower bean yield. Plants with high stomatal frequency (lacking K9) were better able to take advantage of increased water supply by increasing stomatal conductance (upper surface), transpiration and bean yield. Plants with low stomatal frequency (with K9) were unresponsive to irrigation and in this sense were more tolerant of water stress, but their overall yield was low. 相似文献
19.
Relationships between leaf nitrogen (N) content and leaf gas exchange components of a single cotton (Gossypium hirsutum L.) leaf subtending the fruit during ontogeny were investigated under field conditions. A 20-d old leaf exhibited the highest physiological activity characterized by net photosynthetic (PN) and transpiration (E) rates, stomatal conductances to CO2 exchange (gsCO2) and water vapor transfer (gsH2O), and nitrogen (N) content. With the advent of leaf senescence, the gas exchange rates declined as exhibited by the 30-, 40-, and 60-d old leaves. Regression analysis indicated close relationships between gsCO2 and PN, and gsH2O and E as the leaves advanced towards senescence. Both PN and gsCO2 were related to N as they declined with leaf age. Thus, the declines in PN were associated with stomatal closure and removal of N during leaf ontogeny. 相似文献
20.
Using the economics of gas exchange, early studies derived an expression of stomatal conductance ( g ) assuming that water cost per unit carbon is constant as the daily loss of water in transpiration ( f e ) is minimized for a given gain in photosynthesis ( f c ). Other studies reached identical results, yet assumed different forms for the underlying functions and defined the daily cost parameter as carbon cost per unit water. We demonstrated that the solution can be recovered when optimization is formulated at time scales commensurate with the response time of g to environmental stimuli. The optimization theory produced three emergent gas exchange responses that are consistent with observed behaviour: (1) the sensitivity of g to vapour pressure deficit ( D ) is similar to that obtained from a previous synthesis of more than 40 species showing g to scale as 1 − m log( D ), where m ∈ [0.5,0.6], (2) the theory is consistent with the onset of an apparent 'feed-forward' mechanism in g , and (3) the emergent non-linear relationship between the ratio of intercellular to atmospheric [CO2 ] ( c i / c a ) and D agrees with the results available on this response. We extended the theory to diagnosing experimental results on the sensitivity of g to D under varying c a . 相似文献