首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tyrosinated (Tyr) and detyrosinated (Glu) alpha-tubulin, species interconverted by posttranslational modification, are largely segregated in separate populations of microtubules in interphase cultured cells. We sought to understand how distinct Tyr and Glu microtubules are generated in vivo, by examining time-dependent alterations in Tyr and Glu tubulin levels (by immunoblots probed with antibodies specific for each species) and distributions (by immunofluorescence) after microtubule regrowth and stabilization. When microtubules were allowed to regrow after complete depolymerization by microtubule antagonists, Glu microtubules reappeared with a delay of approximately 25 min after the complete array of Tyr microtubules had regrown. In these experiments, Tyr tubulin immunofluorescence first appeared as an aster of distinct microtubules, while Glu tubulin staining first appeared as a grainy pattern that was not altered by detergent extraction, suggesting that Glu microtubules were created by detyrosination of Tyr microtubules. Treatments with taxol, azide, or vinblastine, to stabilize polymeric tubulin, all resulted in time-dependent increases in polymeric Glu tubulin levels, further supporting the hypothesis of postpolymerization detyrosination. Analysis of monomer and polymer fractions during microtubule regrowth and in microtubule stabilization experiments were also consistent with postpolymerization detyrosination; in each case, Glu polymer levels increased in the absence of detectable Glu monomer. The low level of Glu monomer in untreated or nocodazole-treated cells (we estimate that Glu tubulin comprises less than 2% of the monomer pool) also suggested that Glu tubulin entering the monomer pool is efficiently retyrosinated. Taken together these results demonstrate that microtubules are polymerized from Tyr tubulin and are then rapidly converted to Glu microtubules. When Glu microtubules depolymerize, the resulting Glu monomer is retyrosinated. This cycle generates structurally, and perhaps functionally, distinct microtubules.  相似文献   

2.
Microtubule protein preparations purified from rat brain were used to study the effect of polycations and polyanions on the release of the COOH-terminal tyrosine of the alpha-chain of tubulin catalyzed by tubulin carboxypeptidase. (1) Most of the polycations and polyanions tested, independently of the ionogenic group, inhibited the reaction in a concentration-dependent fashion. Under steady-state conditions, detyrosination of the microtubule pool was inhibited to the same degree as occurred with the non-assembled tubulin pool, except in the case of chondroitin sulphate. This compound inhibited detyrosination of the non-assembled tubulin pool, but not that of microtubules. (2) Heparin, the most potent inhibitor tested, produced the dissociation of the carboxypeptidase from microtubules. Many, but not all, of the other microtubule-associated polypeptides were also dissociated by heparin. (3) Polylysine counteracted the inhibitory and dissociating effects of heparin. (4) Heparin protected tubulin carboxypeptidase against inactivation. Our results and previous reports describing, in nervous tissue, the presence of proteoglycans, RNA and basic proteins that inhibit detyrosination, suggest that tubulin carboxypeptidase might be physiologically modulated by electrically charged macromolecules.  相似文献   

3.
Summary Isolated cod brain microtubules from the cold-adapted Atlantic cod (Gadus morhua) have previously been shown to be highly detyrosinated, a post-translational modification of tubulin usually found in stable subsets of microtubules. In this study we found this was not restricted only to isolated brain microtubules. Microtubules in primary cultures of brain and skin cells were composed of both tyrosinated (Tyr)- and detyrosinated (Glu)-tubulin seen by immunocytochemistry. Immunoelectron microscopy of isolated microtubules showed that individual microtubules were composed of a mixture of Tyr- and Glu-tubulin. Leukocytes with extending lamellopodia contained only microtubules stained with the antibody against Tyr-tubulin, and isolated heart tubulin lacked both Tyr- and Glu-tubulin, suggesting that a relative high level of detyrosination is a characteristic of most, but not all, cod microtubules. Brain cell microtubules were more resistant to mitotic inhibitors than skin cell microtubules, but this was not correlated to a difference in detyrosination. Brain and skin cell microtubules were only partially disassembled when incubated at 0°C. Upon reassembly of microtubules at 12°C, microtubules were still made of mixtures of Tyr- and Glu-tubulin, indicating that detyrosination of assembled microtubules is rapid and/or that in cod cells, in contrast to mammalian cells, Glu-tubulin can reassemble to microtubules. Our data show that most cod microtubules are highly detyrosinated, but this is not the cause of their cold adaptation or drug stability.  相似文献   

4.
The association of tubulin carboxypeptidase with microtubules may be involved in the determination of the tyrosination state of the microtubules, i.e. their proportion of tyrosinated vs. nontyrosinated tubulin. We investigated the role of protein phosphatases in the association of carboxypeptidase with microtubules in COS cells. Okadaic acid and other PP1/PP2A inhibitors, when added to culture medium before isolation of the cytoskeletal fraction, produced near depletion of the carboxypeptidase activity associated with microtubules. Isolation of the native assembled and nonassembled tubulin fractions from cells treated and not treated with okadaic acid, and subsequent in vitro assay of the carboxypeptidase activity, revealed that the enzyme was dissociated from microtubules by okadaic acid treatment and recovered in the soluble fraction. There was no effect by nor-okadaone (an inactive okadaic acid analogue) or inhibitors of PP2B and of tyrosine phosphatases which do not affect PP1/PP2A activity. When tested in an in vitro system, okadaic acid neither dissociated the enzyme from microtubules nor inactivated it. In living cells, prior stabilization of microtubules with taxol prevented the dissociation of carboxypeptidase by okadaic acid indicating that dynamic microtubules are needed for okadaic acid to exert its effect. On the other hand, stabilization of microtubules subsequent to okadaic acid treatment did not reverse the dissociating effect of okadaic acid. These results suggest that dephosphorylation (and presumably also phosphorylation) of the carboxypeptidase or an intermediate compound occurs while it is not associated with microtubules, and that the phosphate content determines whether or not the carboxypeptidase is able to associate with microtubules.  相似文献   

5.
In cells, stable microtubules (MTs) are covalently modified by a carboxypeptidase, which removes the C-terminal Tyr residue of α-tubulin. The significance of this selective detyrosination of MTs is not understood. In this study, we report that tubulin detyrosination in fibroblasts inhibits MT disassembly. This inhibition is relieved by overexpression of the depolymerizing motor mitotic centromere-associated kinesin (MCAK). Conversely, suppression of MCAK expression prevents disassembly of normal tyrosinated MTs in fibroblasts. Detyrosination of MTs suppresses the activity of MCAK in vitro, apparently as the result of a decreased affinity of the adenosine diphosphate (ADP)–inorganic phosphate- and ADP-bound forms of MCAK for the MT lattice. Detyrosination also impairs MT disassembly in neurons and inhibits the activity of the neuronal depolymerizing motor KIF2A in vitro. These results indicate that MT depolymerizing motors are directly inhibited by the detyrosination of tubulin, resulting in the stabilization of cellular MTs. Detyrosination of transiently stabilized MTs may give rise to persistent subpopulations of disassembly-resistant polymers to sustain subcellular cytoskeletal differentiation.  相似文献   

6.
Tubulin carboxypeptidase, the enzyme which releases the COOH terminal tyrosine from the a-chain of tubulin, remains associated with microtubules through several cycles of assembly/disassembly (Arce CA, Barra HS: FEBS Lett 157: 75–78, 1983). Here, we present evidence indicating that in rat brain extract the carboxypeptidase/microtubules association is regulated by the relative activities of endogenous protein kinase(s) and phosphatase(s) which seem to determine the phosphorylation state of the enzyme (or another entity) and in some way the affinity of the enzyme for microtubules. The presence of 2.5 mM ATP during the in vitro microtubule formation resulted in a low recovery of carboxypeptidase activity in the microtubule fraction. This ATP-induced effect was not due to alteration of the enzyme activity or to inhibition of microtubule assembly but to a decrease of the association of the enzyme with microtubules. We found that the ATP-induced effect was not mediated by modifications on the microtubules but, presumably, on the enzyme molecule. The non-hydrolyzable ATP analogue, AMP-PCP, did not reproduce the effect of ATP. The inclusion of phosphatase inhibitors in the homogenization buffer also led to a decrease in the amount of tubulin carboxypeptidase associated with microtubules. Finally, we found that, in concordance with the mechanism hypothesized, the magnitude of the carboxypeptidase/microtubule association correlated well with the different incubation conditions created to favor maximal, minimal or intermediate protein phosphorylation states.  相似文献   

7.
Microtubule protein preparations purified by cycles of assembly-disassembly contain the enzyme tubulinyltyrosine carboxypeptidase (TTCPase). Using these preparations, containing tubulinyl[14C]tyrosine, we studied the release of [14C]tyrosine from assembled and non-assembled tubulin under steady-state conditions. It was found that both states of aggregation were detyrosinated at similar rates by the action of the endogenous TTCPase. However, practically no release of [14C]tyrosine from the non-assembled tubulin pool was found when microtubules were previously eliminated from the incubation mixture. These results indicated that non-assembled tubulin requires to interact with microtubules to be detyrosinated. This interaction seems to occur through the incorporation of dimers into microtubules, since when the capability of tubulin to incorporate into microtubules was diminished by binding of colchicine a concomitant decrease in the rate of release of tyrosine was observed. When detyrosination was accelerated by increasing the concentration of TTCPase relative to the microtubule protein concentration, microtubules were found to be detyrosinated faster than was non-assembled tubulin. Using exogenous TTCPase in an incubation system in which the formation of microtubules was not allowed, tubulinyl[14C]tyrosine and tubulinyl[14C]tyrosine-colchicine complex were shown to have similar capabilities to act as substrates for this enzyme. Free colchicine was shown not to affect the activity of TTCPase.  相似文献   

8.
Interphase cultured monkey kidney (TC-7) cells contain distinct subsets of cellular microtubules (MTs) enriched in posttranslationally detyrosinated (Glu) or tyrosinated (Tyr) alpha tubulin (Gundersen, G. G., M. H. Kalnoski, and J. C. Bulinski. 1984. Cell. 38:779-789). To determine the relative stability of these subsets of MTs, we subjected TC-7 cells to treatments that slowly depolymerized MTs. We found Glu MTs to be more resistant than Tyr MTs to depolymerization by nocodazole in living cells, and to depolymerization by dilution in detergent-permeabilized cell models. However, in cold-treated cells, Glu and Tyr MTs did not differ significantly in their stability. Digestion of permeabilized cell models with pancreatic carboxypeptidase A, to generate Glu MTs from endogenous Tyr MTs, did not significantly alter the resistance of the endogenous Tyr MTs toward dilution-induced depolymerization. Furthermore, in human fibroblasts that contained no distinct Glu MTs, we observed a population of nocodazole-resistant MTs. These data suggest that Glu MTs possess enhanced stability against end-mediated depolymerization, yet detyrosination alone appears to be insufficient to confer this enhanced stability.  相似文献   

9.
F Solomon  M Magendantz  A Salzman 《Cell》1979,18(2):431-438
In this paper we describe a procedure for detecting proteins associated with cytoplasmic microtubules in vivo. Detergent-extracted cytoskeletons of NIL8 hamster cells are prepared under conditions which preserve the microtubules. The cytoskeletons are then extracted in the presence of calcium, which depolymerizes the microtubules and quantitatively extracted cytoskeletons are prepared from cells that have been incubated with colchicine. The cytoskeletons from these cells contain no microtubules or tubulin. Electrophoretic analysis of the calcium extracts of the colchicine-treated and untreated cells reveals several radioactively labeled polypeptides. There is, however, no apparent quantitative or qualitative difference between the two extracts other than the tubulin polypeptides. Each of the extracts is mixed with an excess of unlabeled calf brain microtubule protein and carried through cycles of temperature-dependent microtubule assembly. Distinct species from each extract co-assemble at a constant ratio, but only one polypeptide is uniquely derived from cells containing intact microtubules. The molecular weight of this polypeptide is similar to that proposed for the tau species detected in brain microtubule preparations.  相似文献   

10.
This review discusses the possible role of alpha-tubulin detyrosination, a reversible post-translational modification that occurs at the protein's C-terminus, in cellular morphogenesis. Higher eukaryotic cells possess a cyclic post-translational mechanism by which dynamic microtubules are differentiated from their more stable counterparts; a tubulin-specific carboxypeptidase detyrosinates tubulin protomers within microtubules, while the reverse reaction, tyrosination, is performed on the soluble protomer by a second tubulin-specific enzyme, tubulin tyrosine ligase. In general, the turnover of microtubules in undifferentiated, proliferating cells is so rapid that the microtubules accumulate very little detyrosinated tubulin; that is, they are enriched in tyrosinated tubulin. However, an early event common to at least three well-studied morphogenetic events--myogenesis, neuritogenesis, and directed cell motility--is the elaboration of a polarized array of stable microtubules that become enriched in detyrosinated tubulin. The formation of this specialized array of microtubules in specific locations in cells undergoing morphogenesis suggests that it plays an important role in generating cellular asymmetries.  相似文献   

11.
Assembly and turnover of detyrosinated tubulin in vivo   总被引:15,自引:9,他引:6       下载免费PDF全文
Detyrosinated (Glu) tubulin was prepared from porcine brain and microinjected into human fibroblasts and Chinese hamster ovary (CHO) cells. Glu tubulin assembled onto the ends of preexisting microtubules and directly from the centrosome within minutes of its microinjection. Incorporation into the cytoskeleton continued until almost all of the microtubules were copolymers of Glu and tyrosinated (Tyr) tubulin. However, further incubation resulted in the progressive and ultimately complete loss of Glu-staining microtubules. Glu tubulin injected into nocodazole-treated cells was converted to Tyr tubulin by a putative tubulin/tyrosine ligase activity. The observed decrease in staining with the Glu antibody over time was used to analyze microtubule turnover in microinjected cells. The mode of Glu disappearance was analyzed quantitatively by tabulating the number of Glu-Tyr copolymers and Tyr-only microtubules at fixed times after injection. The proportion of Glu-Tyr copolymers decreased progressively over time and no segmentally labeled microtubules were observed, indicating that microtubules turn over rapidly and individually. Our results are consistent with a closely regulated tyrosination-detyrosination cycle in living cells and suggest that microtubule turnover is mediated by dynamic instability.  相似文献   

12.
The detyrosination/retyrosination cycle is the most common post‐translational modification of α‐tubulin. Removal of the conserved C‐terminal tyrosine of α‐tubulin by a still elusive tubulin tyrosine carboxypeptidase, and religation of this tyrosine by a tubulin tyrosine ligase (TTL), are probably common to all eukaryotes. Interestingly, for plants, the only candidates qualifying as potential TTL homologs are the tubulin tyrosine ligase‐like 12 proteins. To get insight into the biological functions of these potential TTL homologs, we cloned the rice TTL‐like 12 protein (OsTTLL12) and generated overexpression OsTTLL12‐RFP lines in both rice and tobacco BY‐2 cells. We found, unexpectedly, that overexpression of this OsTTLL12‐RFP increased the relative abundance of detyrosinated α‐tubulin in both coleoptile and seminal root, correlated with more stable microtubules. This was independent of the respective orientation of cortical microtubule, and followed by correspondingly changing growth of coleoptiles and seminal roots. A perturbed organization of phragmoplast microtubules and disoriented cell walls were further characteristics of this phenotype. Thus, the elevated tubulin detyrosination in consequence of OsTTLL12 overexpression affects structural and dynamic features of microtubules, followed by changes in the axiality of cell plate deposition and, consequently, plant growth.  相似文献   

13.
Microtubule proteins were isolated by a temperature-dependent assembly-disassembly method from brain tissue of for cold-temperate fish; one fresh water fish (Oncorhynchus mykiss), and three marine fish (Labrus berggylta, Zoarces viviparus andGadus morhua). The -tubulins from all four fish species were acetylated. The -tubulins from the marine fish were composed of a mixture of tyrosinated and detyrosinated tubulin, while the fresh water fish tubulin only reacted with an antibody against detyrosinated tubulin. The isolated microtubules had a similar MAP composition. A 400 kD protein and a MAP2-like protein were found, but MAP1 was missing. All microtubules disassembled upon cooling to 0°C. In spite of these common characteristics, the assembly of microtubules fromLabrus berggylta was inhibited by colchicine and calcium, in contrast to the assembly of microtubules fromOncorhynchus mykiss andZoarces viviparus. For the latter, colchicine was not completely inhibitory even at a concentration as high as 1 mM, and calcium induced the formation of both loosely and densely coiled ribbons. The effects of calcium and colchicine on microtubules fromOncorhynchus mykiss andZoarces viviparus were modulated by either fish or cow MAPs, indicating that the effects are due to intrinsic properties of the fish tubulins and not the MAPs. In view of these findings, our results suggest that there is not correlation between colchicine sensitivity, inability of calcium to inhibit microtubule assembly, and acetylation and detyrosination.  相似文献   

14.
Brain slices were used to examine comparatively the incorporation of [14C]tyrosine into the C terminus of alpha-tubulin of the microtubule and non-assembled tubulin pools. We found that the incorporation of [14C]tyrosine from 5 min up to 60 min of incubation was higher in microtubules than in non-assembled tubulin. The possibility that this result was due to the activity of tubulin carboxypeptidase or tubulin:tyrosine ligase during the in vitro isolation of tubulin was discarded. We also found that tubulin:tyrosine ligase was mainly associated with microtubules when brain slices were homogenized under microtubule-preserving conditions. Conversely the enzyme behaved as a soluble entity when homogenization was performed under conditions that do not preserve microtubules. In addition, soluble tubulin:tyrosine ligase did not become sedimentable when in vitro conditions were changed to induce the formation of microtubules. The results presented in this work indicate the possibility that, in vivo, microtubules and not tubulin dimers are the major substrate for tubulin:tyrosine ligase. This is in contrast with previous findings from in vitro experiments, which showed a preference of the ligase for non-assembled tubulin.  相似文献   

15.
The state of tubulin tyrosination in the fission yeast Schizosaccharomyces pombe was investigated using a combination of indirect immunofluorescence microscopy and Western blotting. Antibodies specific for the tyrosinated form of alpha-tubulin stained all microtubule arrays in wild type cells and recognised the two alpha-tubulin polypeptides in Western blots of cell extracts enriched for tubulin by DEAE-Sephadex chromatography. Antisera that specifically recognised the detyrosinated, glu, form, on the other hand, gave consistently negative results, both in cells undergoing rapid exponential growth and in those allowed to accumulate in stationary phase. Neither the "ageing" of microtubules, by arresting cells at different points (late G1 or G2/M) in the cell division cycle, nor stabilising them, using D2O, lead to any detectable tubulin detryrosination. These results suggest that S. pombe lacks the carboxypeptidase that carries out the tubulin detyrosination reaction. This is the first report of an organism that possesses the correct C-terminal alpha-tubulin sequence yet fails to carry out this post-translational modification. The implication of this novel finding for the biological role of these events is discussed.  相似文献   

16.
Immunofluorescence with specific peptide antibodies has previously established that tyrosinated (Tyr) and detyrosinated (Glu) tubulin, the two species generated by posttranslational modification of the COOH-terminus of alpha-tubulin, are present in distinct, but overlapping, subsets of microtubules in cultured cells (Gundersen, G. G., M. H. Kalnoski, and J. C. Bulinski, 1984, Cell, 38:779-789). Similar results were observed by light microscopic immunogold staining in the two cell types used in this study, CV1 and PtK2 cells: most microtubules were stained with the Tyr antibody, whereas only a few were stained with the Glu antibody. We have examined immunogold-stained preparations by electron microscopy to extend these results. In general, electron microscopic localization confirmed results obtained at the light microscopic level: the majority of the microtubules in CV1 and PtK2 cells were nearly continuously labeled with the Tyr antibody, whereas only a few were heavily labeled with the Glu antibody. However, in contrast to the light microscopic staining, we found that all microtubules of interphase and mitotic CV1 and PtK2 cells contained detectable Tyr and Glu immunoreactivity at the electron microscopic level. No specific localization of either species was observed in microtubules near particular organelles (e.g., mitochondria or intermediate filaments). Quantification of the relative levels of Glu and Tyr immunoreactivity in individual interphase and metaphase microtubules showed that all classes of spindle microtubules (i.e., kinetochore, polar, and astral) contained nearly the same level of Glu immunoreactivity; this level of Glu immunoreactivity was lower than that found in all interphase microtubules. Most interphase microtubules had low levels of Glu immunoreactivity, whereas a few had relatively high levels; the latter corresponded to morphologically sinuous microtubules. Quantification of the relative levels of Tyr and Glu immunoreactivity in segments along individual microtubules suggested that the level of Tyr (or Glu) tubulin in a given microtubule was uniform along its length. Understanding how microtubules with different levels of Tyr and Glu tubulin arise will be important for understanding the role of tyrosination/detyrosination in microtubule function. Additionally, the coexistence of microtubules with different levels of the two species may have important implications for microtubule dynamics in vivo.  相似文献   

17.
Microtubules (MTs) have been implicated to function in the change of cell shape and intracellular organization that occurs during myogenesis. However, the mechanism by which MTs are involved in these morphogenetic events is unclear. As a first step in elucidating the role of MTs in myogenesis, we have examined the accumulation and subcellular distribution of posttranslationally modified forms of tubulin in differentiating rat L6 muscle cells, using antibodies specific for tyrosinated (Tyr), detyrosinated (Glu), and acetylated (Ac) tubulin. Both Glu and Ac tubulin are components of stable MTs, whereas Tyr tubulin is the predominant constituent of dynamic MTs. In proliferating L6 myoblasts, as in other types of proliferating cells, the level of Glu tubulin was very low when compared with the level of Tyr tubulin. However, when we shifted proliferating L6 cells to differentiation media, we observed a rapid accumulation of Glu tubulin in cellular MTs. By immunofluorescence, the increase in Glu tubulin was first detected in MTs of prefusion myoblasts and was specifically localized to MTs that were associated with elongating portions of the cell. MTs in the multinucleated myotubes observed at later stages of differentiation maintained the elevated level of Glu tubulin that was observed in the prefusion myoblasts. When cells at early stages of differentiation (less than 1 d after switching the culture medium) were immunostained for Glu tubulin and the muscle-specific marker, muscle myosin, we found that the increase in Glu tubulin preceded the accumulation of muscle myosin. Thus, the elaboration of Glu MTs is one of the very early events in myogenesis. Ac tubulin also increased during L6 myogenesis; however, the increase in acetylation occurred later in myogenesis, after fusion had already occurred. Because detyrosination was temporally correlated with early events of myogenesis, we examined the mechanism responsible for the accumulation of Glu tubulin in the MTs of prefusion myoblasts. We found that an increase in the stability of L6 cell MTs occurred at the onset of differentiation, suggesting that the early increase in detyrosination that we observed is a manifestation of a decrease in MT dynamics in elongating myoblasts. We conclude that the establishment of an oriented array of microtubules heightened in its stability and its level of posttranslationally modified subunits may be involved in the subcellular remodeling that occurs during myogenesis.  相似文献   

18.
The involvement of high molecular weight microtubule-associated proteins (HMW-MAPs) in the process of taxol-induced microtubule bundling has been studied using immunofluorescence and electron microscopy. Immunofluorescence microscopy shows that HMW-MAPs are released from microtubules in granulosa cells which have been extracted in a Triton X-100 microtubule-stabilizing buffer (T-MTSB), unless the cells are pretreated with taxol. 1.0 microM taxol treatment for 48 h results in microtubule bundle formation and the retention of HMW-MAPs in these cells upon extraction with T-MTSB. Electron microscopy demonstrates that microtubules in control cytoskeletons are devoid of surface structures whereas the microtubules in taxol-treated cytoskeletons are decorated by globular particles of a mean diameter of 19.5 nm. The assembly of 3 X cycled whole microtubule protein (tubulin plus associated proteins) in vitro in the presence of 1.0 microM taxol, results in the formation of closely packed microtubules decorated with irregularly spaced globular particles, similar in size to those observed in cytoskeletons of taxol-treated granulosa cells. Microtubules assembled in vitro in the absence of taxol display prominent filamentous extensions from the microtubule surface and center-to-center spacings greater than that observed for microtubules assembled in the presence of taxol. Brain microtubule protein was purified into 6 s and HMW-MAP-enriched fractions, and the effects of taxol on the assembly and morphology of these fractions, separately or in combination, were examined. Microtubules assembled from 6 s tubulin alone or 6 s tubulin plus taxol (without HMW-MAPs) were short, free structures whereas those formed in the presence of taxol from 6 s tubulin and a HMW-MAP-enriched fraction were extensively crosslinked into aggregates. These data suggest that taxol induces microtubule bundling by stabilizing the association of HMW-MAPs with the microtubule surface which promotes lateral aggregation.  相似文献   

19.
Summary We studied the solubility properties of brain acetylated -tubulin, as well as the localization of this tubulin in brain tissue. Endogenous unpolymerized tubulin and cytoskeletal tubulin were fractionated after brain Triton-solubilization. Using the immunoblotting technique, we found that acetylated -tubulin was recovered in the cytoskeletal fraction, and that most (92%) of the acetylated microtubules of this fraction were depolymerized by cold/Ca2+ treatment. In another set of experiments, axonal and soma-dendritic preparations were found to have equivalent amounts of acetylated -tubulin. By immunogold electron microscopy, we established that acetylated microtubules are widely distributed in dendrites of the central nervous system.  相似文献   

20.
Brain membrane preparations contain tubulin that can be extracted with Triton X-114. After the extract is allowed to partition, 8% of the total brain tubulin is isolated as a hydrophobic compound in the detergent-rich phase. Cytosolic tubulin does not show this hydrophobic behaviour since it is recovered in the aqueous phase. Membrane tubulin can be released by 0.1 M Na2CO3 treatment at pH11.5 in such a way that the hydrophobic tubulin is converted into the hydrophilic form. These results suggest that tubulin exists associated with some membrane component that confers the hydrophobic behaviour to tubulin. If the tissue is homogenized in microtubule-stabilizing buffer containing Triton X-100, the hydrophobic tubulin is isolated from the microtubule fraction. This result indicates that the hydrophobic tubulin isolated from membrane preparations belongs to microtubules thatin vivo are associated to membranes. Therefore, hydrophobic tubulin (tubulin-membrane component complex) can be obtained from membranes or from microtubules depending on the conditions of brain homogenization.Abbreviations TBS Tris-buffered saline - Mes 2-(N-morpholine) ethane sulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号