首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative sporicidal effects of liquid chemical agents.   总被引:8,自引:4,他引:4       下载免费PDF全文
We compared the effectiveness of glutaraldehyde, formaldehyde, hydrogen peroxide, peracetic acid, cupric ascorbate (plus a sublethal amount of hydrogen peroxide), sodium hypochlorite, and phenol to inactivate Bacillus subtilis spores under various conditions. Each chemical agent was distinctly affected by pH, storage time after activation, dilution, and temperature. Only three of the preparations (hypochlorite, peracetic acid, and cupric ascorbate) studied here inactivated more than 99.9% of the spore load after a 30-min incubation at 20 degrees C at concentrations generally used to decontaminate medical devices. Under similar conditions, glutaraldehyde inactivated approximately 90%, and hydrogen peroxide, formaldehyde, and phenol produced little killing of spores in suspension. By kinetic analysis at different temperatures, we calculated the rate of spore inactivation (k) and the activation energy of spore killing (delta E) for each chemical agent. Rates of spore inactivation had a similar delta E value of approximately 20 kcal/mol (ca.83.68 kJ/mol) for every substance tested. The variation among k values allowed a quantitative comparison of liquid germicidal agents.  相似文献   

2.
In laboratory conditions, the microbicidal effect, pH and changes in the content of peracetic acid and hydrogen peroxide were tested in Persteril at concentrations of 5 ml/l and 0.5 ml/l as well as in mixtures of these Persteril solutions with the detergents Jar, Pur, Hit, Corona, Sapon, Rekord and Universal. The efficiency and stability of Persteril solution in combination with the detergents were similar to those of Persteril aqueous solution. The tested mixtures ensured satisfactory bactericidal effect after 19-day storage. The sporicidal effect could be guaranteed during 5 days only at a concentration of 5 ml/l and provided disinfection was carried out by submerging. The above mixtures of Persteril and detergents have been recommended for one-stage disinfection in all types of medical facilities requiring simultaneous disinfection and washing.  相似文献   

3.
Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.  相似文献   

4.
Abstract The effects of the combination of any two of the following disinfectants: chlorine, chlorine dioxide, ozone and peracetic acid were investigated using poliovirus 1 as a model virus in a municipal sewage effluent. It was noted that the efficacy of chlorine was enhanced in the presence of either chlorine dioxide, ozone or peracetic acid. Maximum enhancement was achieved when peracetic acid was present with either chlorine or ozone and less enhancement was noted when the peracetic acid was added before chlorine dioxide. Similar results were noted when hydrochloric acid was used instead of peracetic acid. It may be concluded that the application of any two of the disinfectants studied were rarely synergistic but merely additive or complementary (i.e., one disinfectant provides the other with a medium in which it functions better).  相似文献   

5.
Gregersen JP  Roth B 《Biologicals》2012,40(4):282-287
Looking for a robust and simple method to replace formaldehyde fumigation for the disinfection of virus-handling laboratories and facilities, we tested peracetic acid fogging as a method to inactivate stable viruses under practical conditions. Peracetic acid/hydrogen peroxide (5.8%/27.5%, 2.0 mL/m3) was diluted in sufficient water to achieve ≥ 70% relative humidity and was vaporized as <10 μm droplets in a fully equipped 95 m3 laboratory unit. High titers of reovirus 3, MVM parvovirus and an avian polyomavirus were coated on frosted glass carriers and were exposed to the peracetic acid fog in various positions in the laboratory. After vaporization, a 60 min exposure time, and venting of the laboratory, no residual virus was detected on any of the carriers (detection limit <1 infectious unit/sample volume tested). The log reduction values were 9.0 for reovirus, 6.4 for MVM parvovirus, and 7.65 for the polyomavirus. After more than 10 disinfection runs within 12 months, no damage or functional impairment of electrical and electronic equipment was noted.  相似文献   

6.
The antimicrobial properties of aqueous solutions of peracetic acid and hydrogen peroxide have been compared. Peracetic acid exhibited excellent antimicrobial properties, especially under acidic conditions. Reductions by a factor of 106 in the numbers of vegetative bacteria are obtained within 1 min at 25°C using a solution containing 1.3 mmol/l of peracetic acid. Rapid activity against bacterial spores and yeasts also occurs. Hydrogen peroxide is more effective as a sporicide than as a bactericide, with sporicidal action being obtained using a solution containing 0.88 mol/l. Bactericidal action is poor but hydrogen peroxide was bacteriostatic at concentrations above 0.15 mmol/l.  相似文献   

7.
Driven by economic and time constraints, some medical centers and third parties are resterilizing single-use devices (SUDs) for reuse. The steam autoclave is quick, but most plastics used in SUDs cannot survive the temperature. Thus, a number of new methods of cleaning, disinfecting, and sterilizing these complex devices are being introduced on the market. The present study investigated the effects of a range of methods on the tensile strength of latex rubber, silicone elastomer, 2 different formulations of polyurethane, nylon, and high-density polyethylene (HDPE) specimens. The methods used were sodium hypochlorite bleach (Clorox), peracetic acid + hydrogen peroxide (Steris), formaldehyde gas (Chemiclave), low-temperature peracetic acid and gas plasma (Plazlyte), and low-temperature hydrogen peroxide gas plasma (Sterrad). The results showed that silicone elastomer was minimally affected, whereas the strengths of nylon, polyethylene, and latex were reduced by some of the methods. Depending on the formulation, the strength of polyurethane either increased or decreased. The data demonstrated that disinfection and sterilization can affect the tensile strength of certain materials used in medical devices.  相似文献   

8.
The aim of the presented study was determined the effectiveness of sporicidal activity the peracetic acid and the hydrogen peroxide against B. anthracis spores. In the investigations was used B. anthracis stain "Sterne" 34F2. As inactivators were applied 0,5 % natriumthiosulphate and catalase. The obtained results show that the sporicidal effect of studied substances depends from their concentration and operates time. 5% water solution of peracetic acid shows the full sporicidal activity after outflow 120 minutes and the hydrogen peroxide about concentration 30% after outflow 180 minutes. However the hydrogen peroxide.  相似文献   

9.
Cellular and bacterial toxicities of topical antimicrobials   总被引:2,自引:0,他引:2  
Cellular and bacterial toxicities of four commonly used topical antimicrobials (1% povidone-iodine, 3% hydrogen peroxide, 0.25% acetic acid, and 0.5% sodium hypochlorite) were assayed in vitro using cultures of human fibroblasts and Staphylococcus aureus. All agents tested at full strength killed 100 percent of exposed fibroblasts. Fibroblast toxicity exceeded bacterial toxicity with serial dilutions of hydrogen peroxide and acetic acid. Dilutions of povidone-iodine (1:1000) and sodium hypochlorite (1:100) were identified where no fibroblast toxicity occurred while full bactericidal activity persisted.  相似文献   

10.
Peracetic acid is used as a sterilant in several industrial settings. Cells of a plant-colonizing bacterium, Pseudomonas putida in liquid suspension, were more sensitive to killing by peracetic acid when they lacked a major catalase activity, catalase A. Low doses of peracetic acid induced promoter activity of the gene encoding catalase A and increased total catalase specific activity in cell extracts. Microbes present in native agricultural soils rapidly degraded the active oxygen species present in peracetic acid. The simultaneous release of oxygen was consistent with a role for catalase in degrading the hydrogen peroxide that is part of the peracetic acid-equilibrium mixture. Amendment of sterilized soils with wild-type P. putida restored the rate of degradation of peracetic acid to a higher level than was observed in the soils amended with the catalase A-deficient mutant. The association of the bacteria with the plant roots resulted in protection of the wild-type as well as the catalase-deficient mutant from killing by peracetic acid. No differential recovery of the wild-type and catalase A mutant of P. putida was observed from roots after the growth matrix containing the plants was flushed with peracetic acid.  相似文献   

11.
Procedures of sterilization and disinfection are essential to ensure that medical and surgical instruments will not transmit infectious pathogens to patients. In the present paper, we tested the residual effect of these compounds on biofilm formation and its efficiency in disrupting preformed biofilms using methicillin-resistant Staphylococcus aureus (MRSA) isolates of the lineage ST239-SCCmecIII. All compounds examined, except 70% alcohol, caused a significant impairment in biofilm formation with concomitant inhibition of cell growth. Among the compounds examined, 10% povidone-iodine (PVP-I) was the only antiseptic that exhibited more than 90% reduction of both biofilm formation and dispersion. In the group of sterilants and disinfectants, a formulation containing 7% hydrogen peroxide and 0.2% peracetic acid (HP-PA), and sodium hypochlorite with 1% active chlorine (NaOCl) were equally effective.  相似文献   

12.
To explore possible mechanisms of the arachidonic acid deficiency of the red blood cell membrane in alcoholics, we compared the effect of ethanol and its oxidized products, acetaldehyde and peracetic acid, with other peroxides on the accumulation of [14C]arachidonate into RBC membrane lipids in vitro. Incubation of erythrocytes with 50 mM ethanol or 3 mM acetaldehyde had no effect on arachidonate incorporation. Pretreatment of erythrocytes with 10 mM hydrogen peroxide, 0.1 mM cumene hydroperoxide or 0.1 mM t-butyl hydroperoxide had little effect on [14C]arachidonate incorporation in the absence of azide. However, pretreatment of cells with N-ethylmaleimide, 0.1 mM peracetic acid or performic acid, with or without azide, inhibited arachidonate incorporation into phospholipids but not neutral lipids. In chase experiments, peracetate also inhibited transfer of arachidonate from neutral lipids to phospholipids. To investigate a possible site of this inhibition of arachidonate transfer into phospholipids by percarboxylic acids, we assayed a repair enzyme, arachidonoyl CoA: 1-palmitoyl-sn-glycero-3-phosphocholine acyl transferase (EC 2.3.1.23). As in intact cells, phospholipid biosynthesis was inhibited more by N-ethylmalemide and peracetic acid than by hydrogen peroxide, cumene hydroperoxide, and t-butyl hydroperoxide. Peracetic acid was the only active inhibitor among ethanol and its oxidized products studied and may deserve further examination in ethanol toxicity.  相似文献   

13.
Spores of Bacillus subtilis SA22, harvested from nutrient agar after 9 d at 30°C and stored in distilled water at 4°C, were unaltered in their resistance to 17.7% hydrogen peroxide or 0.04% peracetic acid after storage for up to 134 weeks. Three spore crops of B. subtilis globigii were unaffected by storage for up to 134 weeks with respect to 17.7% hydrogen peroxide resistance but were significantly more resistant to 0.04% peracetic acid following storage.  相似文献   

14.
15.

Background

Acid electrolyzed water (AEW), which is produced through the electrolysis of dilute sodium chloride (NaCl) or potassium chloride solution, is used as a disinfectant in various fields because of its potent antimicrobial activity. The hydroxyl radical, an oxygen radical species, is often suggested as a putative active ingredient for AEW antimicrobial activity.

Methodology/Principal Findings

The aim of the present study is to detect hydroxyl radicals in AEW. The hydroxyl radicals in AEW prepared under different conditions were determined using an electron spin resonance (ESR) technique. A signal from 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH, an adduct of DMPO and the hydroxyl radical, was detected in AEW prepared by double or triple electrolyses of 1% NaCl but not of 0.1% NaCl solution. Then the presence of hydrogen peroxide as a proposed source of hydroxyl radicals was examined using a combination of ESR and a Fenton reaction. The DMPO-OH signal was clearly detected, even in AEW prepared by single electrolysis of 0.1% NaCl solution, when ferrous sulfate was added to induce a Fenton reaction, indicating the presence of hydrogen peroxide in the AEW. Since sodium formate, a hydroxyl radical scavenger, did not affect the bactericidal activity of AEW, it is concluded that the radical is unlikely to contribute to the antimicrobial activity of AEW, although a small amount of the radical is produced from hydrogen peroxide. Dimethyl sulfoxide, the other hydroxyl radical scavenger used in the present study, canceled the bactericidal activity of AEW, accompanied by complete depletion of free available chlorine, suggesting that hypochlorous acid is probably a major contributor to the antimicrobial activity.

Conclusions

It is strongly suggested that although hydrogen peroxide is present in AEW as a source of hydroxyl radicals, the antimicrobial activity of AEW does not depend on these radicals.  相似文献   

16.
H S Soedjak  A Butler 《Biochemistry》1990,29(34):7974-7981
Vanadium bromoperoxidase (V-BrPO) has been isolated and purified from the marine brown algae Fucus distichus and Macrocystis pyrifera. V-BrPO catalyzes the oxidation of bromide by hydrogen peroxide, resulting in the bromination of certain organic acceptors or the formation of dioxygen. V-BrPO from F. distichus and M. pyrifera have subunit molecular weights of 65,000 and 74,000, respectively, and specific activities of 1580 units/mg (pH 6.5) and 1730 units/mg (pH 6) for the bromination of monochlorodimedone, respectively. As isolated, the enzymes contain a substoichiometric vanadium/subunit ratio; the vanadium content and specific activity are increased by addition of vanadate. V-BrPO (F. distichus, M. pyrifera, and Ascophyllum nodosum) also catalyzes the oxidation of bromide using peracetic acid. In the absence of an organic acceptor, a mixture of oxidized bromine species (e.g., hypobromous acid, bromine, and tribromide) is formed. Bromamine derivatives are formed from the corresponding amines, while 5-bromocytosine is formed from cytosine. In all cases, the rate of the V-BrPO-catalyzed reaction is much faster than that of the uncatalyzed oxidation of bromide by peracetic acid, at pH 8.5, 1 mM bromide, and 2 mM peracetic acid. In contrast to hydrogen peroxide, V-BrPO does not catalyze formation of dioxygen from peracetic acid in either the presence or absence of bromide. V-BrPO also uses phenylperacetic acid, m-chloroperoxybenzoic acid, and p-nitroperoxybenzoic acid to catalyze the oxidation of bromide; dioxygen is not formed with these peracids. V-BrPO does not catalyze bromide oxidation or dioxygen formation with the alkyl peroxides ethyl hydroperoxide, tert-butyl hydroperoxide, and cuminyl hydroperoxide.  相似文献   

17.
The inhibitory and bactericidal activities of anacardic acid and totarol, alone and in combination with methicillin, were investigated against methicillin-resistant Staphylococcus aureus (MRSA). The growth of two MRSA strains was inhibited by 6·25 μg ml-1 of anacardic acid and 0·78 μg ml-1 of totarol. The time-kill curve study showed that these two compounds were bactericidal against MRSA. Anacardic acid killed MRSA cells more rapidly than totarol, and no viable cells were detected after being exposed to 6·25 μg ml-1 of anacardic acid for 6 h. Anacardic acid showed bactericidal activity against MRSA at any stage of growth, and also even when cell division was inhibited by chloramphenicol. In the combination studies, the minimal inhibitory concentration (MIC) of methicillin was lowered from 800 to 1·56 μg ml-1 for MRSA ATCC 33591, and from 800 to 6·25 μg ml-1 for MRSA ATCC 33592, by combining with 1/2 X MIC of anacardic acid. The time-kill curves demonstrated synergistic bactericidal activities for these combinations.  相似文献   

18.
Treatment of secondary effluents with hydrogen peroxide (10 mg/liter)-ascorbic acid (10 mg/liter)-Cu2+ (0.5 mg/liter) for 60 min resulted in around 99% reduction of the initial plate count. Hydrogen peroxide could be replaced by other peroxygen compounds; ascorbic acid could be replaced by other reducing agents, of which sodium sulfite and ethanol were the most effective. Cu2+, however, could not be replaced by other metal ions without loss of bactericidal efficiency of the ternary combination. Enterobacteriaceae, total and fecal coliforms, staphylococci, and micrococci were reduced by 99.0 to 99.9%. Group D streptococci aerobic spores were reduced by 80 and 15%, respectively. Clostridium perfringens, yeasts, and molds were not killed by the disinfectant combinations. The effect of pH was only minor in the range from 6 to 7.5. At a higher pH value the bactericidal effects tended to decrease. The hydrogen peroxide-ascorbic acid-Cu2+ combination made it possible to obtain 99% reduction within 30 min. When using the hydrogen peroxide-sodium sulfite-Cu2+ or the hydrogen peroxide-ethanol-Cu2+ combinations, 60 min of contact time was necessary to obtain 99% reduction of the initial plate count. Cu2+ combined to an intermediate product of the ascorbic acid autoxidation is the toxic agent, and its penetration into the cell is promoted by hydrogen peroxide.  相似文献   

19.
20.
The physiological role of a bifunctional enzyme, 3,4-dihydrocoumarin hydrolase (DCH), which is capable of both hydrolysis of ester bonds and organic acid-assisted bromination of organic compounds, was investigated. Purified DCH from Acinetobacter calcoaceticus F46 catalysed dose- and time-dependent degradation of peracetic acid. The gene (dch) was cloned from the chromosomal DNA of the bacterium. The dch ORF was 831 bp long, corresponding to a protein of 272 amino acid residues, and the deduced amino acid sequence showed high similarity to those of bacterial serine esterases and perhydrolases. The dch gene was disrupted by homologous recombination on the A. calcoaceticus genome. The dch disruptant strain was more sensitive to growth inhibition by peracetic acid than the parent strain. On the other hand, the recombinant Escherichia coli cells expressing dch were more resistant to peracetic acid. A putative catalase gene was found immediately downstream of dch, and Northern blot hybridization analysis revealed that they are transcribed as part of a polycistronic mRNA. These results suggested that in vivo DCH detoxifies peroxoacids in conjunction with the catalase, i.e. peroxoacids are first hydrolysed to the corresponding acids and hydrogen peroxide by DCH, and then the resulting hydrogen peroxide is degraded by the catalase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号