首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four forms of horseradish peroxidase (HRP) have been used to prepare peroxidase-modified gold electrodes for mediatorless detection of peroxide: native HRP, wild type recombinant HRP, and two recombinant forms containing six-His tag at the C-terminus and at the N-terminus, respectively. The adsorption of the enzyme molecules on gold was studied by direct mass measurements with electrochemical quartz crystal microbalance. All the forms of HRP formed a monolayer coverage of the enzyme on the gold surface. However, only gold electrodes with adsorbed recombinant HRP forms exhibited high and stable current response to H(2)O(2) due to its bioelectrocatalytic reduction based on direct electron transfer between gold and HRP. The sensitivity of the gold electrodes modified with recombinant HRPs was in the range of 1.4-1.5 A M(-1) cm(-2) at -50 mV versus Agmid R:AgCl. The response to H(2)O(2) in the concentration range 0.1-40 microM was not dependent on the presence of a mediator (i.e. catechol) giving strong evidence that the electrode currents are diffusion limited. Lower detection limit for H(2)O(2) detection was 10 nM at the electrodes modified with recombinant HRPs.  相似文献   

2.
A new third-generation biosensor for H(2)O(2) assay was developed on the basis of the immobilization of horseradish peroxidase (HRP) in a nanocomposite film of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ)/multiwalled carbon nanotubes (MWCNTs) modified gold electrode. The prepared HRP/TTF-TCNQ/MWCNTs/Au electrode was used for the bioelectrocatalytic reduction of H(2)O(2), with a linear range from 0.005 to 1.05mM and a detection limit of 0.5muM for amperometric sensing of H(2)O(2). In addition, a novel method on the basis of electrochemical quartz crystal microbalance (EQCM) measurements was proposed to determine the effective enzymatic specific activity (ESA) of the immobilized HRP for the first time, and the ESA was found to be greater at the TTF-TCNQ/MWCNTs/Au electrode than that at the MWCNTs/Au or TTF-TCNQ/Au electrode, indicating that the TTF-TCNQ/MWCNTs film is a good HRP-immobilization matrix to achieve the direct electron transfer between the enzyme and the electrode.  相似文献   

3.
Adsorption and bioelectrocatalytic activity of native horseradish peroxidase (HRP) and its recombinant forms on polycrystalline gold electrodes were studied. Recombinant forms of HRP were produced by a genetic engineering approach using an E. coli expression system. According to direct mass measurements with a quartz crystal microbalance, all the forms of HRP formed monolayer coverage of the enzyme on the gold surface. However, only gold electrodes modified with the recombinant HRP forms (non-glycosylated) exhibited high and stable current response to H2O2 due to its bioelectrocatalytic reduction based on direct electron transfer (ET) between gold and the active site of the enzyme. Introduction of a six-His tag either at the C-terminus or at the N-terminus of the enzyme molecule additionally increased the strength of the enzyme binding with the gold surface and the efficiency of direct ET. Immobilization of recombinant forms of HRP containing histidine functional groups on the surface of the gold electrode was used both for the development of a P-chip, a biosensor for hydrogen peroxide determination based on direct ET, and for the development of a bienzyme biosensor electrode for the determination of L-lysine based on co-immobilized recombinant forms of HRP and L-lysine--oxidase.  相似文献   

4.
A bienzymatic glucose biosensor was proposed for selective and sensitive detection of glucose. This mediatorless biosensor was made by simultaneous immobilization of glucose oxidase (GOD) and horseradish peroxidase (HRP) in an electropolymerized pyrrole (PPy) film on a single-wall carbon nanotubes (SWNT) coated electrode. The amperometric detection of glucose was assayed by potentiostating the bienzymatic electrode at -0.1 versus Ag/AgCl to reduce the enzymatically produced H(2)O(2) with minimal interference from the coexisting electroactive compounds. The single-wall carbon nanotubes, sandwiched between the enzyme loading polypyrrole (PPy) layer and the conducting substrate (gold electrode), could efficiently promote the direct electron transfer of HRP. Operational characteristics of the bienzymatic sensor, in terms of linear range, detection limit, sensitivity, selectivity and stability, were presented in detail.  相似文献   

5.
Horseradish peroxidase (HRP) was successfully immobilized on vertically oriented TiO(2) nanotube arrays (NTAs), which was prepared by a seeded-growth mechanism. The nanotubular structure of TiO(2) was characterized by scanning electron microscope (SEM). After encapsulated HRP on TiO(2) nanotube arrays, the direct electron transfer of HRP was observed. Owing to the redox reaction of electroactive center of HRP, the HRP/TiO(2) NTAs modified electrode exhibited a pair of quasi-reversible peaks with the peak-to-peak separation of 70mV and the formal potential of -0.122V (vs. SCE) in 0.2molL(-1) phosphate buffer solution (PBS, pH 7.0). The number of transference electron was 0.84 and the direct electron transfer (ET) constant (k(s)) was 3.82s(-1). The HRP/TiO(2) NTAs modified electrode displayed an excellent electrocatalytic performance for H(2)O(2) and the formal Michaelis-Menten constant (K(m)(app)) was 1.9mmolL(-1). The response currents had a good linear relation with the concentration of H(2)O(2) from 5.0x10(-7)molL(-1) to 1.0x10(-5)molL(-1) and 5.0x10(-5)molL(-1) to 1.0x10(-3)molL(-1), respectively.  相似文献   

6.
Bioelectrocatalytic reduction of H(2)O(2) catalysed by lignin peroxidase from Phanerochaete chrysosporium (LiP) was studied with LiP-modified graphite electrodes to elucidate the ability of LiP to electro-enzymatically oxidise phenols, catechols, as well as veratryl alcohol (VA) and some other high-redox-potential lignin model compounds (LMC). Flow-through amperometric experiments performed at +0.1 V vs. Ag|AgCl demonstrated that LiP displayed significant bioelectrocatalytic activity for the reduction of H(2)O(2) both directly (i.e., in direct electron transfer (ET) reaction between LiP and the electrode) and using most of studied compounds acting as redox mediators in the LiP bioelectrocatalytic cycle, with a pH optimum of 3.0. The bioelectrocatalytic reduction of H(2)O(2) mediated by VA and effects of VA on the efficiency of bioelectrocatalytic oxidation of other co-substrates acting as mediators were investigated. The bioelectrocatalytic oxidation of phenol- and catechol derivatives and 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulphonate) by LiP was independent of the presence of VA, whereas the efficiency of the LiP bioelectrocatalysis with the majority of other LMC acting as mediators increased upon addition of VA. Special cases were phenol and 4-methoxymandelic acid (4-MMA). Both phenol and 4-MMA suppressed the bioelectrocatalytic activity of LiP below the direct ET level, which was, however, restored and increased in the presence of VA mediating the ET between LiP and these two compounds. The obtained results suggest different mechanisms for the bioelectrocatalysis of LiP depending on the chemical nature of the mediators and are of a special interest both for fundamental science and for application of LiP in biotechnological processes as solid-phase bio(electro)catalyst for decomposition/detection of recalcitrant aromatic compounds.  相似文献   

7.
Native horseradish peroxidase (HRP) on graphite has revealed approximately 50% of the active enzyme molecules to be in direct electron transfer (ET) contact with the electrode surface. Some novel plant peroxidases from tobacco, peanut and sweet potato were kinetically characterised on graphite in order to find promising candidates for biosensor applications and to understand the nature of the direct ET in the case of plant peroxidases. From measurements of the mediated and mediatorless currents of hydrogen peroxide reduction at the peroxidase-modified rotating disk electrodes (RDE), it was concluded that the fraction of enzyme molecules in direct ET varies substantially for the different plant peroxidases. It was observed that the anionic peroxidases (from sweet potato and tobacco) demonstrated a higher percentage of molecules in direct ET than the cationic ones (HRP and peanut peroxidase). The peroxidases with a high degree of glycosylation demonstrated a lower percentage of molecules in direct ET. It could, thus, be concluded that glycosylation of the peroxidases hinders direct ET and that a net negative charge on the peroxidase (low pI value) is beneficial for direct ET. Especially noticeable are the values obtained for sweet potato peroxidase (SPP), revealing both a high percentage in direct ET and a high rate constant of direct ET. The peroxidase electrodes were used for determination of hydrogen peroxide in RDE mode (mediatorless). SPP gave the lowest detection limit (40 nM) followed by HRP and peanut peroxidase.  相似文献   

8.
Direct electron transfer of immobilized horseradish peroxidase on gold colloid and its application as a biosensor were investigated by using electrochemical methods. The Au colloids were associated with a cysteamine monolayer on the gold electrode surface. A pair of redox peaks attributed to the direct redox reaction of horseradish peroxidase (HRP) were observed at the HRP/Au colloid/cysteamine-modified electrode in 0.1 M phosphate buffer (pH 7.0). The surface coverage of HRP immobilized on Au colloid was about 7.6 x 10(-10) mol/cm(2). The sensor displayed an excellent electrocatalytic response to the reduction of H(2)O(2) without the aid of an electron mediator. The calibration range of H(2)O(2) was 1. 4 microM to 9.2 mM with good linear relation from 1.4 microM to 2.8 mM. A detection limit of 0.58 microM was estimated at a signal-to-noise ratio of 3. The sensor showed good reproducibility for the determination of H(2)O(2). The variation coefficients were 3. 1 and 3.9% (n = 10) at 46 microM and 2.8 mM H(2)O(2), respectively. The response showed a Michaelis-Menten behavior at higher H(2)O(2) concentrations. The K(app)(M) value for the H(2)O(2) sensor was found to be 2.3 mM.  相似文献   

9.
The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate gel matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O2 and H2O2, which is superior to that immobilized in silica sol-gel film.  相似文献   

10.
Direct electron transfer process of immobilized horseradish peroxidase (HRP) on a conducting polymer film, and its application as a biosensor for H2O2, were investigated by using electrochemical methods. The HRP was immobilized by covalent bonding between amino group of the HRP and carboxylic acid group of 5,2':5',2"-terthiophene-3'-carboxylic acid polymer (TCAP) which is present on a glassy carbon (GC). A pair of redox peaks attributed to the direct redox process of HRP immobilized on the biosensor electrode were observed at the HRPmid R:TCAPmid R:GC electrode in a 10 mM phosphate buffer solution (pH 7.4). The surface coverage of the HRP immobilized on TCAPmid R:GC was about 1.2 x 10(-12) mol cm(-2) and the electron transfer rate (ks) was determined to be 1.03 s(-1). The HRPmid R:TCAPmid R:GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the reduction of H2O2 without the aid of an electron transfer mediator. The calibration range of H2O2 was determined from 0.3-1.5 mM with a good linear relation.  相似文献   

11.
The direct electrochemistry of horseradish peroxidase (HRP) on a novel sensing platform modified glassy carbon electrode (GCE) has been achieved. This sensing platform consists of Nafion, hydrophilic room-temperature ionic liquid (RTIL) and Au nanoparticles dotted titanate nanotubes (GNPs-TNTs). The composite of RTIL and GNPs-TNTs was immobilized on the electrode surface through the gelation of a small amount of HRP aqueous solution. The composite was characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and infrared spectroscopy (IR). UV-Vis and IR spectroscopy demonstrated that HRP in the composite could retain its native secondary structure and biochemical activity. The HRP-immobilized electrode was investigated by cyclic voltammetry and chronoamperometry. The results from both techniques showed that the direct electron transfer between the nanocomposite modified electrodes and heme in HRP could be realized. The biosensor responded to H(2)O(2) in the linear range from 5×10(-6) to 1×10(-3) mol L(-1) with a detection limit of 2.1×10(-6) mol L(-1) (based on the S/N=3).  相似文献   

12.
Gold nanoparticles stabilized by chitosan (AuCS) were hybridized with exfoliated clay nanoplates through electrostatic interaction. The resulting clay-chitosan-gold nanoparticle nanocomposite (Clay/AuCS) was used to modify glassy carbon electrode (GCE). HRP, a model peroxidase, was entrapped between the Clay/AuCS film and another clay layer. UV-vis spectrum suggested HRP retained its native conformation in the modified film. Basal plane spacing of clay obtained by X-ray diffraction (XRD) indicated that there was an intercalation-exfoliation-restacking process among HRP, AuCS and clay during the modified film drying. The immobilized HRP showed a pair of quasi-reversible redox peaks at -0.195 V (vs. saturated Ag/AgCl electrode) in 0.1M PBS (pH 7.0), and the biosensor displayed a fast amperometric response to H(2)O(2) with a wide linear range of 39 microM to 3.1 mM. The detection limit was 9.0 microM based on the signal to noise ratio of 3. The kinetic parameters such as alpha (charge transfer coefficient), k(s) (electron transfer rate constant) and K(m) (Michaelis-Menten constant) were evaluated to be 0.53, 2.95+/-0.20s(-1) and 23.15 mM, respectively.  相似文献   

13.
Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H(2)O(2). The pH effect on amperometric response to H(2)O(2) was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.  相似文献   

14.
In this work, a novel sensing scaffold, consisting Au nanoparticle (GNP)-dotted TiO(2) nanotubes (TNTs) as the rigid material and the hydrophobic ionic liquid (HIL), 1-decyl-3-methylimidazolium tetrafluoroborate, as the entrapping agent, was applied to facilitate the electron transfer of horseradish peroxidase (HRP) on a glassy carbon electrode. GNPs were immobilised on the TNTs in our work using a one-step reduction of HAuCl(4)·3H(2)O by sodium borohydride in the presence of sodium citrate as a stabilising reagent. The morphology and composition of the as-synthesised composite materials were characterised by transmission electron microscopy, scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. Cyclic voltammetry of HRP at the modified electrode presented a pair of reproducible, quasi-reversible redox peaks with a peak-to-peak separation of 69 mV, indicating electron transfer between HRP and composite electrode. The GNP-TNT|HIL|HRP electrode was then applied to the detection of H(2)O(2) in a pH 7.0 phosphate buffer using chronoamperometry. The biosensor exhibited a linear response in the 15-750 μM range, and a limit of detection of 2.2 μM. The biosensor also exhibited stability with 90% of the detection signal retained over a two-week duration.  相似文献   

15.
A new film for the fabrication of an unmediated H2O2 biosensor   总被引:2,自引:0,他引:2  
A novel and stable film made from polyethylene glycol (PEG) on pyrolytic graphite (PG) electrode was presented in this paper for incorporating horseradish peroxidase (HRP) to study the direct electrochemistry of the enzyme. In PEG film, HRP showed a thin-layer electrochemistry behavior. The apparent standard potential (E degrees ') was -0.379 V versus SCE at pH 7.2. Moreover, the PEG-HRP modified electrode exhibited excellent electrocatalytical response to the reduction of H2O2 with a calibration range between 2.0 x 10(-6) and 6.0 x 10(-4) M and a good linear relation from 2.0 x 10(-6) to 1.0 x 10(-4) M, on which an unmediated H2O2 biosensor was based. The detection limit of 6.7 x 10(-7) M was estimated when the signal-to-noise ratio was 3. The relative standard deviation (R.S.D.) was 4.7% for six successive determinations at a concentration of 4.0 x 10(-5) M. The apparent Michaelis-Menten constant (Km app) of the sensor was found to be 1.38 mM. Epinephrine, dopamine, and ascorbic acid did not interfere with the sensitive determination of H2O2.  相似文献   

16.
Bioelectrocatalytic reduction of H2O2 catalysed by lignin peroxidase from Phanerochaete chrysosporium (LiP) was studied with LiP-modified graphite electrodes to elucidate the ability of LiP to electro-enzymatically oxidise phenols, catechols, as well as veratryl alcohol (VA) and some other high-redox-potential lignin model compounds (LMC). Flow-through amperometric experiments performed at +0.1 V vs. Ag|AgCl demonstrated that LiP displayed significant bioelectrocatalytic activity for the reduction of H2O2 both directly (i.e., in direct electron transfer (ET) reaction between LiP and the electrode) and using most of studied compounds acting as redox mediators in the LiP bioelectrocatalytic cycle, with a pH optimum of 3.0. The bioelectrocatalytic reduction of H2O2 mediated by VA and effects of VA on the efficiency of bioelectrocatalytic oxidation of other co-substrates acting as mediators were investigated. The bioelectrocatalytic oxidation of phenol- and catechol derivatives and 2,2′-azino-bis(3-ethyl-benzothiazoline-6-sulphonate) by LiP was independent of the presence of VA, whereas the efficiency of the LiP bioelectrocatalysis with the majority of other LMC acting as mediators increased upon addition of VA. Special cases were phenol and 4-methoxymandelic acid (4-MMA). Both phenol and 4-MMA suppressed the bioelectrocatalytic activity of LiP below the direct ET level, which was, however, restored and increased in the presence of VA mediating the ET between LiP and these two compounds. The obtained results suggest different mechanisms for the bioelectrocatalysis of LiP depending on the chemical nature of the mediators and are of a special interest both for fundamental science and for application of LiP in biotechnological processes as solid-phase bio(electro)catalyst for decomposition/detection of recalcitrant aromatic compounds.  相似文献   

17.
The direct electron transfer of immobilized horseradish peroxidase (HRP) on silica-hydroxyapatite (HAp) hybrid film-modified glassy carbon electrode (GCE) and its application as H(2)O(2) biosensors were investigated. On silica/HRP-HAp/GCE, HRP displayed a fast electron transfer process accompanied with one proton participate in. This sensor exhibited an excellent electrocatalytic response to the reduction of H(2)O(2) without the aid of an electron mediator. The proposed biosensor showed good reproducibility and high sensitivity to H(2)O(2) with the detection limit of 0.35 microM. In the range of 1.0-100 microM, the catalytic reduction current of H(2)O(2) was proportional to H(2)O(2) concentration. The apparent Michaelis-Menten constant (k(m)(app)) of the biosensor was calculated to be 21.8 microM, exhibiting a high enzymatic activity and affinity for H(2)O(2).  相似文献   

18.
Huang R  Hu N 《Biophysical chemistry》2003,104(1):199-208
This paper reports the direct voltammetry of horseradish peroxidase (HRP) incorporated in amphiphilic polyacrylamide (PAM) films modified on pyrolytic graphite (PG) electrodes. Cyclic voltammetry of HRP-PAM films showed a pair of well-defined, nearly reversible peaks at approximately -0.33 V vs. SCE in pH 7.0 buffers, characteristic of HRP heme Fe(III)/Fe(II) redox couple. The PAM films in solution contained large amounts of water and formed a hydrogel, and provided a favorable microenvironment for HRP and facilitated its direct electron transfer with underlying PG electrodes. The apparent heterogeneous electron transfer rate constant (k(s)) and formal potential (E*') were estimated by fitting the data of square wave voltammetry (SWV) with the non-linear regression analysis. UV-vis absorption spectra demonstrated that HRP in PAM films retained its secondary structure similar to its native state. The embedded HRP in PAM films showed the electrocatalytic activity to various substrates such as nitrite, oxygen and hydrogen peroxide. The possible mechanism of catalytic reaction of H(2)O(2) with HRP-PAM films was proposed.  相似文献   

19.
Horseradish peroxidase-catalysed oxidation of thiocyanate by hydrogen peroxide has been studied by 15N-NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pH values. The extent of the oxidation and the identity of the oxidized product of the thiocyanate has been investigated in the SCN-/H2O2/HRP system and compared with the corresponding data on the SCN-/H2O2/LPO system. The NMR studies show that (SCN)2 is the oxidation product of thiocyanate in the SCN-/H2O2/HRP system, and its formation is maximum at pH less than or equal to 4 and that the oxidation does not take place at pH greater than or equal to 6. Since thiocyanate does not bind to HRP at pH greater than or equal to 6 (Modi et al. (1989) J. Biol. Chem. 264, 19677-19684), the binding of thiocyanate to HRP is considered to be a prerequisite for the oxidation of thiocyanate. It is further observed that at [H2O2]/[SCN-] = 4, (SCN)2 decomposes very slowly back to thiocyanate. The oxidation product of thiocyanate in the SCN-/H2O2/LPO system has been shown to be HOSCN/OSCN- which shows maximum inhibition of uptake by Streptococcus cremoris 972 bacteria when hydrogen peroxide and thiocyanate are present in equimolar amounts (Modi et al. (1991) Biochemistry 30, 118-124). However, in case of HRP no inhibition of oxygen uptake by this bacteria was observed. Since thiocyanate binds to LPO at the distal histidine while to HRP near 1- and 8-CH3 heme groups, the role of distal histidine in the activity of SCN-/H2O2/(LPO, HRP) systems is indicated.  相似文献   

20.
Intercalation of horseradish peroxidase (HRP) into layered titanate by assembling it with titanate nano-sheets (TNS) was firstly used for fabrication of enzyme electrode (HRP-TNS electrode). XRD result revealed that HRP-TNS film featured layered structure with HRP monolayer intercalated between the titanate layers. UV-vis spectra result indicated the intercalated HRP in TNS film well retained its native structure. The HRP-TNS film was uniform with porous structures which were confirmed by SEM. The immobilized HRP in the TNS film exhibited fast direct electron transfer and showed a good electrocatalytic performance to H2O2 with high sensitivity, wide linear range and low detection. The excellent electrochemical performance of the HRP-TNS electrode was attributed to biocompatibility of the titanate sheets, porous architectures of the HRP-TNS film which retained activity of HRP to large extent, avoided aggregation of HRP, provided better mass transport and allowed more HRP loading per unit area. Thus, the simple method described here provides a novel and effective platform for immobilization of enzyme in realizing direct electrochemistry and has a promising application in fabrication of the third-generation electrochemical biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号