首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteasome is a high molecular weight, multisubunit and multicatalytic enzyme. Here we report the purification and characterization of ostrich skeletal muscle 20S proteasome. It was purified to homogeneity with Mr 700,000, pI 6.67 and a 'ladder' of 22.2-33.5 kDa bands on SDS-PAGE. The amino acid composition and amino-terminal sequences showed large identities to those of other species. For the three major activities, pH and temperature optima ranged between 8.0-11.0 and 40-70 degrees C, and stabilities between 5-12 and up to 40-60 degrees C. Substrate specificity and inhibitory effects were also studied. Many similarities to other sources were shown, with a few significant differences.  相似文献   

2.
Changes in the proteasome system, a dominant actor in protein degradation in eukaryotic cells, have been documented in a large number of physiological and pathological conditions. We investigated the influence of monounsaturated or polyunsaturated fatty acids (PUFAs) supplemented diets on the proteasome system, in rat skeletal muscles. Thirty rats were randomly assigned to three groups. The control group received only a standard diet. The monounsaturated fatty acid (MUFA) enriched diet group was fed with 3% sunflower oil in addition to standard food, and the polyunsaturated fatty acid supplemented diet group received 9% Maxepa) in addition to the standard diet. We analyzed muscle proteasome activities and content. Monounsaturated or PUFAs supplemented diets given for 8 weeks induced a significant increase in proteasome activities. With the polyunsaturated fatty acid enriched diet, the chymotrypsin-like and peptidylglutamylpeptide hydrolase activities increased by 45% in soleus and extensor digitorum longus (EDL), and by 90% in the gastrocnemius medialis (GM) muscle. Trypsin-like activity of the proteasome increased by 250% in soleus, EDL and GM. This increase in proteasome activities was associated with a concomitant enhancement in the muscle content of proteasome. Proteasome activities and level were less stimulated with a monounsaturated fatty acid supplemented diet. This study provides evidence that a monounsaturated or polyunsaturated fatty acid supplemented diet may regulate muscle proteasomes. Unsaturated fatty acids are particularly prone to free radical attack. Thus, we suggest that alterations in muscle proteasome may result from monounsaturated and polyunsaturated fatty acid-induced peroxidation, in order to eliminate damaged proteins.  相似文献   

3.
Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training   总被引:10,自引:0,他引:10  
The purposes of this study were to determine whether exercise training induces increases in skeletal muscle antioxidant enzymes and to further characterize the relationship between oxidative capacity and antioxidant enzyme levels in skeletal muscle. Male Sprague-Dawley rats were exercise trained (ET) on a treadmill 2 h/day at 32 m/min (8% incline) 5 days/wk or were cage confined (sedentary control, S) for 12 wk. In both S and ET rats, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) activities were directly correlated with the percentages of oxidative fibers in the six skeletal muscle samples studied. Muscles of ET rats had increased oxidative capacity and increased GPX activity compared with the same muscles of S rats. However, SOD activities were not different between ET and S rats, but CAT activities were lower in skeletal muscles of ET rats than in S rats. Exposure to 60 min of ischemia and 60 min of reperfusion (I/R) resulted in decreased GPX and increased CAT activities but had little or no effect on SOD activities in muscles from both S and ET rats. The I/R-induced increase in CAT activity was greater in muscles of ET than in muscles of S rats. Xanthine oxidase (XO), xanthine dehydrogenase (XD), and XO + XD activities after I/R were not related to muscle oxidative capacity and were similar in muscles of ET and S rats. It is concluded that although antioxidant enzyme activities are related to skeletal muscle oxidative capacity, the effects of exercise training on antioxidant enzymes in skeletal muscle cannot be predicted by measured changes in oxidative capacity.  相似文献   

4.
5.
Prior to weaning, medium-chain fatty acids constitute an important energy source in the developing rat. Fatty acid oxidation rates increase with age in most developing tissues, but the pattern of this increase may vary according to the role of the particular organ. In skeletal muscle, heart, and liver of developing rats, we measured mitochondrial activities of long- and short-chain enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and long- and short-chain acyl-CoA thiolase. In skeletal muscle, the pattern of development in fatty acid oxidation enzymes favored utilization of long-chain rather than medium-chain fatty acids. In liver, enzyme activities for medium-chain fatty acids were highest prior to weaning. Heart occupied a position intermediate between skeletal muscle and liver.  相似文献   

6.
During the last years many investigations have shown that a major catalyst within the mechanism of skeletal muscle wasting occuring under conditions like sepsis, injuries, trauma, cancer cachexia, chronic acidosis, fasting, glucocorticoid treatment, and insulinopenia is the ubiquitin-proteasome system. Evidence for this was obtained by findings that the rate of ATP-dependent protein degradation is increased, that m-RNA concentrations of several proteasome subunits and ubiquitin are increased and the amount of ubiquitin-protein conjugates is elevated under these conditions. Additionally, the enhanced protein breakdown was shown to be suppressed by proteasome inhibitors. In the present report we show that most but not all of the proteolytic activities of partially purified 20S/26S proteasomes from skeletal muscle of rats increase after induction of Diabetes mellitus. This finding suggests that part of the mechanism of acceleration of muscle protein breakdown is due to changes in proteasome activities.  相似文献   

7.
Insulin-dependent diabetes mellitus is known to go along with enhanced muscle protein breakdown. Since evidence has been presented that the ubiquitin-proteasome system is significantly involved in muscle wasting under this condition, we have investigated, whether this biological role goes along with alterations of the proteasome system in skeletal muscle of streptozotocin-diabetic rats. Previously, we have found a drop of overall proteasome activity in muscle extracts of rats after induction of diabetes but no change in total amount of 20S proteasome was detected. In the present investigation under the same diabetic conditions we have measured a significant decrease in the amount of proteasome activator PA28, a finding that explains the loss of total proteasome activity. Since increased mRNA levels of proteasome subunits have been measured in muscle tissue of rats after induction of diabetes, we have isolated and purified 20S proteasomes from muscle tissue of control and 6 days diabetic rats. The specific chymotrypsin-like, trypsin-like, and peptidylglutamylpeptide-hydrolysing activities of proteasomes from diabetic and control rats were found to be not significantly different. Therefore, we have fractionated 20S proteasomes into their subtypes and detected that induction of diabetes mellitus effects a redistribution of subtypes of all three proteasome populations but only the increase in subtype V (immuno-subtype) was statistically significant. This altered subtype pattern obviously meets the requirements to the system under wasting conditions. Since this process goes along with de novo biogenesis of 20S proteasomes, it most likely explains the phenomenon of elevated mRNA concentrations of proteasome subunits after induction of diabetes mellitus.  相似文献   

8.
The effects of natural (fatty acids) or synthetic detergents on some highly purified enzymes has been studied. Four dehydrogenases (glucose-6-phosphate-, lactico-, malico- and isocitrico-dehydrogenase) are highly inhibited by these products. Other enzymes are not inhibited or inactivated by them. The mechanism of the action of detergents is specifically based on their binding to the enzyme at the level of its proteic constituent and close to its active group.  相似文献   

9.
Proteinase II, a high-molecular-mass proteinase previously identified in white croaker skeletal muscle, was purified to apparent homogeneity by DEAE-Sephacel, phenyl-Sepharose CL 4B, and Sephacryl S-300 chromatographies. Under denaturing conditions, the enzyme dissociated into a cluster of subunits with Mr ranging from 18,000 to 26,000 and a large subunit with a Mr 60,000. The proteinase was able to hydrolyze N-terminal-blocked 4-methyl-7-coumarylamide substrates having either an aromatic amino acid (chymotrypsin-like activity) or an arginine residue (trypsin-like activity) adjacent to the fluorogenic group. The trypsin-like activity of the enzyme was inhibited by fatty acids and sodium dodecyl sulfate, whereas the chymotrypsin-like activity was stimulated by those compounds but inhibited by nonionic and cationic detergents. Several thiol reagents inhibited both proteinase II activities. However, leupeptin and Cu2+ strongly inhibited its trypsin-like activity but only slightly affected its chymotrypsin-like activity. Dithiothreitol stimulated both activities, but at different extents and in different concentration ranges. These results suggest that the enzyme is multicatalytic, having at least two different active sites.  相似文献   

10.
A kinetic investigation of ostrich thrombin specificity, its regulation and evolutionary development in comparison to those of other well-characterised species may contribute to the understanding of the structure-function relationships of thrombin. Antithrombin III (ATIII) was purified from ostrich plasma by heparin-Sepharose and Super Q-650S chromatography. It exhibited a M(r) of 59.2K and a pI in the range of 5.2-6.0. The ostrich N-terminal sequence was compared to those of other known species and showed the highest identity with rabbit ATIII (31%). Inhibition studies included the interaction of ostrich and human ATIII with bovine, human and ostrich thrombin. At a 2:1 molar ratio of ostrich ATIII to enzyme, 20 and 40% remaining activity was found for bovine and ostrich thrombin, respectively. Ostrich thrombin exhibited a pH and temperature optimum of 9.0 and 60 degrees C, respectively. Hydrolysis of seven peptide p-nitroanilide substrates by ostrich thrombin revealed D-Phe-Pip-Arg-pNA (k(cat)/K(m)=9.65 microM(-1)s(-1)) as the substrate with the highest catalytic efficiency. The effect of monovalent cations on ostrich thrombin catalysis revealed enhanced activity with Na(+). The calculated K(i) values for the complex formation between ostrich thrombin and ostrich (9.29 x 10(-11)M) and human (9.66 x 10(-11)M) ATIII are comparable to reported results. The results obtained from the present study confirmed that ostrich thrombin and ATIII are closely related to the corresponding molecules of other species in terms of physicochemical and kinetic properties.  相似文献   

11.
1. Fish skeletal muscle contains an alkaline thiol proteinase with a temperature optimum of 60 degrees C and undetectable activity below 50 degrees C. 2. The present study shows that fatty acids and sodium dodecyl sulphate (SDS) shifted the temperature-activity curve of the enzyme toward the lower temperature side. 3. All unsaturated fatty acids tested strongly stimulated proteolytic activity at 37 degrees C, whereas myristic acid was the only saturated fatty acid that produced an important degree of activation. 4. These effects could be observed at millimolar concentrations of the reagents.  相似文献   

12.
A number of acute wasting conditions are associated with an upregulation of the ubiquitin-proteasome system in skeletal muscle. Eicosapentaenoic acid (EPA) is effective in attenuating the increased protein catabolism in muscle in cancer cachexia, possibly due to inhibition of 15-hydroxyeicosatetraenoic acid (15-HETE) formation. To determine if a similar pathway is involved in other catabolic conditions, the effect of EPA on muscle protein degradation and activation of the ubiquitin-proteasome pathway has been determined during acute fasting in mice. When compared with a vehicle control group (olive oil) there was a significant decrease in proteolysis of the soleus muscles of mice treated with EPA after starvation for 24 h, together with an attenuation of the proteasome "chymotryptic-like" enzyme activity and the induction of the expression of the 20S proteasome alpha-subunits, the 19S regulator and p42, an ATPase subunit of the 19S regulator in gastrocnemius muscle, and the ubiquitin-conjugating enzyme E2(14k). The effect was not shown with the related (n-3) fatty acid docosahexaenoic acid (DHA) or with linoleic acid. However, 2,3,5-trimethyl-6-(3-pyridylmethyl)1,4-benzoquinone (CV-6504), an inhibitor of 5-, 12- and 15-lipoxygenases also attenuated muscle protein catabolism, proteasome "chymotryptic-like" enzyme activity and expression of proteasome 20S alpha-subunits in soleus muscles from acute fasted mice. These results suggest that protein catabolism in starvation and cancer cachexia is mediated through a common pathway, which is inhibited by EPA and is likely to involve a lipoxygenase metabolite as a signal transducer.  相似文献   

13.
A procedure for the purification of a very hydrophobic lipase from Pseudomonas sp. strain ATCC 21808 was elaborated by avoiding the use of long-chain detergents in view of subsequent crystallization of the enzyme. The purification procedure included chromatography on Q-Sepharose in the presence of n-octyl-beta-D-glucopyranoside, Ca2+ precipitation of fatty acids, and Octyl-Sepharose chromatography. The enzyme was purified 260-fold to a yield of 35% and a specific activity of 3,300 U/mg. The molecular weight was determined as 35,000; a polyacrylamide gel under nondenaturing conditions revealed a band at 110,000, and the isoelectric point proved to be at 4.5 to 4.6. The lipase crystallized with different salts and ethylene glycol polymers in the presence of n-octyl-beta-D-glucopyranoside and one alkyloligooxyethylene compound (CxEy) in the range from C5E2 to C8E4. The crystals diffract to a resolution of about 0.25 nm. Precession photographs revealed that they belong to space group C2 with lattice constants of a = 9.27 nm, b = 4.74 nm, c = 8.65 nm, and beta = 122.3 degrees, indicating a cell content of one molecule per asymmetric unit of the crystal. In hydrolysis of triglycerides, the lipase showed substrate specificity for saturated fatty acids from C6 to C12 and unsaturated long-chain fatty acids. Monoglycerides were hydrolyzed very slowly. The N-terminal sequence is identical to that of the lipase from Pseudomonas cepacia. Treatment with diethyl-p-nitrophenylphosphate affected the activities toward triolein and p-nitrophenylacetate to the same extent and with the same velocity.  相似文献   

14.
Similar to all other eukaryotic cells and tissues muscle tissue contains the proteolytic system of 20S/26S proteasomes with the 20S proteasome existing predominantly in a latent state. Unlike with the mammalian enzymein vitro transition from the latent to the activated state of the 20S proteasomes isolated from muscle of several fish species and from lobster can be achieved by heat shock. It is very likely that the activated state of the 20S proteasome corresponds to the physiologically active form of the enzyme since only that one is able to attack sarcoplasmic and myofibrillar proteins to any significant extent. As perfusion of rat hindquarters with presumptive low molecular mass activators like free fatty acids does not result in an activation of the muscle proteasome other — possibly protein activators — may serve this purposein vivo. The 26S proteasome complex may be regarded as such a proteasome/activator complex. The 26S proteasome complex has the ability to degrade protein (-ubiquitin-conjugates) by an ATP-consuming reaction. Since increased amounts of ubiquitinated proteins as well as an enhanced activity of the ATP (-ubiquitin)-dependent proteolytic system have been measured in rat muscle tissue during various catabolic conditions, it is not unlikely that this pathway is responsible for catalysis of muscle protein breakdown.Abbreviations Bz benzoyl - PGPH peptidylglutamylpeptide hydrolysing - Suc succinyl - Z benzyloxycarbonyl  相似文献   

15.
An isolate exhibiting high extracellular lipolytic activity was identified as Bacillus subtilis by 16S rRNA gene sequence analysis. The enzyme activity of the isolate was improved by using different concentrations of lipidic carbon sources such as vegetable oils, fatty acids and triglycerides. Lipolytic activity was assayed spectrophotometrically using p-nitrophenyl palmitate. One percent (v/v) of sesame oil provided the highest activity with 80 and 98% enhancements with respect to 1% (v/v) concentrations of linoleic acid and triolein as the favored fatty acid and triglyceride, respectively. Glucose presented a repressive effect on lipase production. Lipase secreted by B. subtilis was partially purified by ultrafiltration and anion exchange chromatography; and the purified enzyme was tested for its residual activity in the presence of EDTA, SDS, Triton X-100, Tween 20, Tween 80 and protease. The present work reports, for the first time, that the lipolytic activity of a B. subtilis strain can be improved by using inexpensive vegetable oils; and also that B. subtilis lipase is suitable for use in detergents.  相似文献   

16.
The fatty acid composition of total lipids and phospholipids of duck salt gland Na,K-ATPase (outer plasma membrane) and of rabbit skeletal muscle Ca-ATPase (intracellular membrane) was investigated. The bulk of Na,K-ATPase fatty acids is represented by palmitic (16:0), oleic (18:1), stearic (18:0) and arachidonic (20:4) acids. The duck salt gland is characterized by rather a high content of unsaturated fatty acids, especially of arachidonic acid. The unsaturation index of total-lipid fatty acids increases during purification of these preparations in the following order: homogenate greater than microsomal fraction greater than purified enzyme. The fatty acid composition of Na,K-ATPase total lipids and phospholipids reveals certain differences. Phospholipids contain more stearic and liholeic (18:2) acids than total lipids, but the level of arachidonic acid in them is twice as low. Besides, phospholipids were found to contain polyunsaturated docosohexaenic (22:6) acid. The bulk of fatty acids of rabbit skeletal muscle Ca-ATPase total lipids and phospholipids is represented by 16:0, 18:0, 18:1 and 18:2 acids. The content of polyunsaturated fatty acids in this preparation is much lower than in duck salt gland Na,K-ATPase. The fatty acid composition of total lipids and phospholipids in rabbit skeletal muscle Ca-ATPase differ insignificantly. The differences in the fatty acid composition of membrane preparations under study is conditioned mainly by the fractional composition of their lipids.  相似文献   

17.
A myofibril-bound serine protease (MBSP) was partially purified from ostrich (Struthio camelus) skeletal muscle. MBSP was dissociated from the myofibrillar fraction by ethylene glycol treatment at pH 8.5, followed by partial purification via Toyopearl Super Q 650 S and p-aminobenzamidine column chromatographies. Ostrich MBSP revealed a major protein band of approximately 21 kDa on SDS-PAGE, showing proteolytic activity after casein zymography. Optima pH and temperature of ostrich MBSP were 8 and 40 °C, respectively. Substrate specificity analysis revealed that the enzyme cleaved synthetic fluorogenic substrates at the carboxyl side of arginine residues. Kinetic parameters (Km and Vmax values) were calculated from Lineweaver–Burk plots. The kinetic characteristics of ostrich MBSP were compared to values obtained for commercial bovine trypsin in this study, as well as those obtained for MBSP from mouse and various fish species. The results suggest that ostrich MBSP is a tryptic-like serine protease. Ostrich MBSP exhibited low sequence identity to commercial bovine trypsin (44%), MBSP from lizard fish skeletal muscle (33%) and trypsinogen from ostrich pancreas (22%).  相似文献   

18.
The 20S proteasome (multicatalytic proteinase) was purified from maize (Zea mays L. cv DEA 1992) roots through a five-step procedure. After biochemical characterization, it was shown to be similar to most eukaryotic proteasomes. We investigated the involvement of the 20S proteasome in the response to carbon starvation in excised maize root tips. Using polyclonal antibodies, we showed that the amount of proteasome increased in 24-h-carbon-starved root tips compared with freshly excised tips, whereas the mRNA levels of alpha 3 and beta 6 subunits of 20S proteasome decreased. Moreover, in carbon-starved tissues, chymotrypsin-like and caseinolytic activities of the 20S proteasome were found to increase, whereas trypsin-like activities decreased. The measurement of specific activities and kinetic parameters of 20S proteasome purified from 24-h-starved root tips suggested that it was subjected to posttranslational modifications. Using dinitrophenylhydrazine, a carbonyl-specific reagent, we observed an increase in carbonyl residues in 20S proteasome purified from starved root tips. This means that 20S proteasome was oxidized during starvation treatment. Moreover, an in vitro mild oxidative treatment of 20S proteasome from non-starved material resulted in the activation of chymotrypsin-like, peptidyl-glutamyl-peptide hydrolase and caseinolytic-specific activities and in the inhibition of trypsin-like specific activities, similar to that observed for proteasome from starved root tips. Our results provide the first evidence, to our knowledge, for an in vivo carbonylation of the 20S proteasome. They suggest that sugar deprivation induces an oxidative stress, and that oxidized 20S proteasome could be associated to the degradation of oxidatively damaged proteins in carbon starvation situations.  相似文献   

19.
Dahlmann B  Ruppert T  Kloetzel PM  Kuehn L 《Biochimie》2001,83(3-4):295-299
20S proteasomes from tissues and cells are a mixture of several subtypes. From rat skeletal muscle we have tentatively separated six different subtypes of 20S proteasomes purified from rat skeletal muscle by high-resolution anion exchange chromatography. Immunoblot analysis using antibodies to the beta-subunits LMP2, LMP7 and their constitutive counterparts delta and MB1 revealed that two of the three major subtypes (subtypes I and II) are constitutive proteasomes, whereas two of the three minor subtypes belong to the subpopulation of immuno-proteasomes. Subtype III and IV are intermediate-type proteasomes. Enzymological characterisation of the six subtypes revealed clearly different V(max) values for hydrolysis of fluorogenic peptide substrates as well as significantly different activities measured with a 25-mer polypeptide of the murine cytomegalovirus IE pp89 protein as substrate. Our data show that the properties of 20S proteasomes isolated from a given tissue or cells are always the average of the properties of the whole set of proteasome subtypes.  相似文献   

20.
A microsomal activity of baby hamster kidney cells which cleaves ester-type bound fatty acids from acyl proteins in vitro has been characterized. This activity is also present in microsomal membranes from pig liver, calf kidney, and human mucous cells. Cell free deacylation is described for the Semliki Forest virus acyl proteins E1 and E2 and the precursor of E2 designated p62. Acyl chain cleavage operates with both exogenous and endogenous viral acyl protein substrates. The in vitro cleavage requires microsomes solubilized by detergents of which various kinds are equally effective (Nonidet P-40, Tween 20, sodium deoxycholate, Triton X-100, or octyl-beta-D-glucoside). If microsomes are boiled for 15 min prior to the incubation, deacylation is abolished completely and no radioactivity is released from the palmitoylated acyl proteins during incubation with either detergents or microsomes alone. No changes in the molecular structure of the deacylated Semliki Forest virus proteins were detected, and the cleavage product was identified as free fatty acid. Deacylation is time- and temperature-dependent and can be enhanced by increasing the concentration of microsomal protein in the incubation mixture. It is completely inhibited under acidic conditions (pH 5) and at low temperature (4 degrees C). Deacylation also occurs in the presence of EDTA and bivalent cations such as Mg2+, Mn2+, and Ca2+ which influence the reaction marginally. On the other hand, fatty acid release is drastically reduced with a mixture of Co2+, Zn2+, and Hg2+ ions. The activity is not identical with protein fatty acyltransferase operating in the reverse direction, since a partially purified preparation of this acyltransferase failed to cleave fatty acids from fatty acylated substrate proteins. Taken together, these data lead us to postulate an enzymatic activity which cleaves fatty acids from ester-type fatty acylated proteins, and we propose to designate this enzyme a protein fatty acylesterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号