首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Purpose

Biotic resources are considered a key element of bio-economy. In the present study we focus on the forest supply industry, assessing environmental sustainability through Life Cycle Assessment (LCA) methodology. We explored and evaluated forestry operations in order to support decision-makers in choosing the best operational modes for site-specific conditions. Main aims of the study are: 1) a LCA-based systematic comparative analysis of different operational modes and technological options associated with wood extraction considering site-specific conditions; 2) the quantification of impacts associated with transport of wood material.

Methods

A case study on the alpine region of Italy (Intelvi Valley) is presented and discussed. Different forestry activities were investigated, comparing the traditional operational method with a more mechanized one (advanced mechanization). All operations were included within the system boundaries, from felling to transport to sawmill. Regarding the traditional operational method, different options were evaluated, considering that: 1) the extraction could be performed by cable-yard or winch; and 2) the delimbing phase could be performed before or after extraction phase. Each activity was modeled using primary data, assuring that real forest conditions are taken into account and assessed.

Results

In spite of the expectations associated with advanced mechanization, the hypothesis to choose traditional mechanization was preferable for Intelvi Valley conditions. Fuel consumption and related emissions proved to be the main source of impacts. Sensitivity analyses highlighted that advanced mechanization could be the best method to perform forestry operations, if used in proper conditions (i.e. at the top productivity rate) and that the choice of a short supply chain drastically reduces the impacts induced by long distance transportation.

Conclusions

The choice of the best technological options should be based on a site-specific and context- related assessment. It is very important to give priority to the operational mode which minimizes the hours necessary to perform each operation. It was also found that the technological option should be chosen according to the geomorphology and topography and the site-specific characteristics of the area investigated, and no one option can be considered as the most suitable for all conditions.Furthermore, current impact assessment methods are still lacking in the evaluation of potential impact to biodiversity in the specific context were the extraction takes place. Further investigations related to the environmental profile of a product will be object of a second study that will concern the design of green furniture pieces, starting from certified wood as raw material.  相似文献   

2.

Goal, Scope and Background  

District heating, the utilization of centrally produced heat for space heating and domestic hot water generation, has the potential to contribute to the eco-efficient use of energy resources in the parts of the world where space heating is needed. In literature, environmental studies on district heating mainly consider the emissions from heat generation; the environmental impact from the distribution system is seldom discussed. This paper presents a life cycle assessment of the production of district heating pipes, based on a cradle-to-gate life cycle inventory commissioned by the Swedish District Heating Association. No external review has been performed but a reference group of district heating experts familiar with the practice was involved in the choice of cases as well as in reviewing parts of the study.  相似文献   

3.
The International Journal of Life Cycle Assessment - Tempeh is a traditional Indonesian fermented soybean product, which plays an essential role in its culture and economy and forms an important...  相似文献   

4.

Purpose  

In recent years, a new perspective for food packaging has emerged as a result of several issues like quality, safety, competitive prices or providing of useful information to consumers. This new perspective is called communicative packaging. Communicative packaging may influence consumers/companies on purchasing decisions. Since the environmental evaluation of such systems has not yet been performed, this paper is focused on the environmental evaluation of a flexible best-before-date (FBBD) communicative device on a packaging consumer unit and its implications on reducing environmental impacts related to fresh products. This consumer unit consists of a nanoclay-based polylactic acid tray filled with pork chops.  相似文献   

5.
Life cycle assessment of the supply and use of water in the Segura Basin   总被引:1,自引:0,他引:1  

Purpose

In this paper, the combined life cycle assessment of the water supply alternatives and the water use in a water-stressed watershed in Spain (the Segura) is presented. Although it is a dry area, agriculture and tourism are very profitable sectors with high water demands. Thus, external water supply alternatives including water transfers or desalination partly balance the reduced natural water availability to cover the existing water demands.

Methods

In order to integrate both the impact of water supply alternatives and water use, the ReCiPe method was used to assess the water supply alternatives at the endpoint approach with the three specific damage categories: human health, ecosystem diversity and damage to resources availability. At the same time, the water use impact was calculated and grouped in the same categories. Firstly, one average cubic metre of water at the user's gate in the Segura Basin area was taken as the functional unit. As irrigation and drinking water constitute the principal water uses, it was considered that to separately analyse 1 m3 used for irrigation and 1 m3 destined to drinking purposes could provide interesting information. Then, these units were also considered as functional units. Then, three additional hypothetical scenarios were introduced: two of them defined by a strong variability in rainfall and the third by a sudden diminution of water transferred from a neighbouring basin.

Results and discussion

Regarding the facilities to provide 1 m3 at user's gate in the Segura Basin, results showed that the seawater desalination plants obtained the highest score for all the three considered damage categories, followed by the Tajo–Segura water transfer, the groundwater, the local surface waters and the water reuse. In relation to the water use impact, the damage to ecosystems diversity was very representative with respect to the one coming from water supply infrastructures because irrigation constituted 85 % of the total demand.

Conclusions

The diversification of water supply alternatives within a region considerably increases any environmental impact, primarily stemming from the additional required infrastructures, and frequently from the use of external water sources for their uses. Thus, users and policy makers should be aware of the costs that a guaranteed water supply entails. In water-scarce territories, the use of external solutions such as desalination or water transfer either increase the environmental impact due to their high energy consumption or they are limited by existing climate variability. Therefore, they cannot be considered as the definite solution, which would be a balance between renewable sources and existing demands.  相似文献   

6.

Purpose

Diminishing fossil resources and environmental concerns associated with their vast utilization have been in focus by energy policy makers and researchers. Among the different scenarios put forth to commercialize biofuels, various biorefinery concepts have aroused global interests because of their ability in converting biomass into a spectrum of marketable products and bioenergies. This study was aimed at developing different novel castor-based biorefinery scenarios for generating biodiesel and other co-products, i.e., ethanol and biogas. In these scenarios, glycerin, heat, and electricity were also considered as byproducts. Developed scenarios were also compared with a fossil reference system delivering the same amount of energy through the combustion of neat diesel.

Materials and methods

Life cycle assessment (LCA) was used to investigate the environmental consequences of castor biodiesel production and consumption with a biorefinery approach. All the input and output flows from the cultivation stage to the combustion in diesel engines as well as changes in soil organic carbon (SOC) were taken into account. Impact 2002+ method was used to quantify the environmental consequences.

Results and discussion

The LCA results demonstrated that in comparison with the fossil reference system, only one scenario (i.e., Sc-3 with co-production of significant amounts of biodiesel and biomethane) had 16% lower GHG emissions without even considering the improving effect of SOC. Moreover, resource damage category of this scenario was 50% lower than that of neat diesel combustion. The results proved that from a life cycle perspective, energy should be given priority in biorefineries because it is essential for a biorefinery to have a positive energy balance in order to be considered as a sustainable source of energy. Despite a positive effect on energy and GHG balances, these biorefineries had negative environmental impacts on the other damage categories like Human Health and Ecosystem Quality.

Conclusions

Although biorefineries offer unique features as promising solutions for mitigating climate change and reducing dependence on fossil fuels, the selection of biomass processing options and management decisions can affect the final results in terms of environmental evaluations and energy balance. Moreover, if biorefineries are focused on transportation fuel production, a great deal of effort should still be made to have better environmental performance in Human Health and Ecosystem Quality damage categories. This study highly recommends that future studies focus towards biomass processing options and process optimization to guarantee the future of the most sustainable biofuels.
  相似文献   

7.
8.

Purpose

The article presents the method and results of the life cycle assessments (LCAs) of the Vestas' 2-MW GridStreamer TM wind turbines and outlines the state-of-the-art approach adopted. For more than 10 years, Vestas has prepared LCAs of wind power. However, since 2010, a step change in comprehensiveness has been employed, for example, conducting the LCA to individually assess all components within a wind turbine (being composed of around 25,000 parts).

Methods

Three LCAs have been conducted with the 2-MW GridStreamerTM turbines in accordance with ISO 14040/44 and critically reviewed by an expert. The goal was to evaluate potential environmental impacts and other non-impact indicators per kilowatt hour of electricity generated for a ‘typical’ 50-MW onshore wind plant.The LCAs assessed all life cycle stages and were built using GaBi DfX software. A significant quantity of primary data were gathered, for example, covering over 100 Vestas' sites for manufacturing, sales and servicing, as well as establishing turbine use-phase performance (i.e. electricity generation, servicing, etc.) based on over 20,000 monitored wind turbines around the world, covering around 20 % of the current worldwide installed capacity.

Results and discussion

The baseline results show that per kilowatt hour of electricity generated by the 2-MW GridStreamer? turbines have the following baseline performance: ADP elements 0.44 to 0.58 mg Sb-e, ADP fossil 0.10 to 0.13 MJ; acidification potential 37 to 45 mg SO2-e, eutrophication potential 3.7 to 4.5 mg PO4-e, freshwater aquatic ecotoxicity 100 to 130 mg DCB-e, global warming potential 7 to 10 g CO2-e, human toxicity potential 1,150 to 1,400 mg DCB-e, marine aquatic ecotoxicity potential 1,100 to 1,300 g DCB-e, photochemical oxidant creation 4 to 5 mg ethene, terrestrial ecotoxicity potential 19 to 24 mg DCB-e, return-on energy 8 to 11 months and recyclability 81 to 85 % of turbine mass.Being equipped with extensive facts and comprehensive LCA models provides Vestas the basis to further integrate environmental considerations into product marketing, design and research, procurement and to deliver transparent information to stakeholders.

Conclusions

Overall, the article presents a case study of the LCA approach used to assess the potential impacts of 2-MW GridStreamer? turbines based upon comprehensive product knowledge and represents a state-of-the-art approach to LCA modelling of wind power. The article discusses further applications of LCA internally to direct product improvement and for external communications and also highlights the LCAs' aim to improve transparency and robustness of previous LCAs of wind power.
  相似文献   

9.

Purpose

Life cycle assessment (LCA) methodology is a well-established analytical method to quantify environmental impacts, which has been mainly applied to products. However, recent literature would suggest that it has also the potential as an analysis and design tool for processes, and stresses that one of the biggest challenges of this decade in the field of process systems engineering (PSE) is the development of tools for environmental considerations.

Method

This article attempts to give an overview of the integration of LCA methodology in the context of industrial ecology, and focuses on the use of this methodology for environmental considerations concerning process design and optimization.

Results

The review identifies that LCA is often used as a multi-objective optimization of processes: practitioners use LCA to obtain the inventory and inject the results into the optimization model. It also shows that most of the LCA studies undertaken on process analysis consider the unit processes as black boxes and build the inventory analysis on fixed operating conditions.

Conclusions

The article highlights the interest to better assimilate PSE tools with LCA methodology, in order to produce a more detailed analysis. This will allow optimizing the influence of process operating conditions on environmental impacts and including detailed environmental results into process industry.  相似文献   

10.
11.
The International Journal of Life Cycle Assessment - Different proportions of colored fibers are able to spin into melange yarns with different colors and textures. With the advantages of energy...  相似文献   

12.

Purpose  

This paper is the second part of a two-paper series dealing with the sustainability evaluation of a new communicative packaging concept. The communicative packaging concept includes a device that allows changing the expiry date of the product as function of temperature during transport and storage: a flexible best-before-date (FBBD). Such device was analysed in a consumer unit consisting of a nanoclay-based polylactic acid tray filled with pork chops.  相似文献   

13.
This study was intended to evaluate the environmental impact, and potential improvements for a typical tractor model (LT360D) of LG Machinery Co., Ltd. The life cycle of this study includes all stages from raw material acquisition up to final disposal. The eco-indicator 95 method was employed to perform an impact assessment. The result of this study is expected to represent the environmental feature of typical diesel vehicles at each life cycle stage. This study is a starting point of building life cycle inventories for typical off-road diesel tractors. With this result, environmental weak points of the tractor have been defined, and major improvement strategies have been set up to develop the ‘Green Tractor’.  相似文献   

14.
Background, Aims and Scope In recent years, the automotive industry has been experiencing an increasing concern with environmental requirements. A particular focus is being given to light-weighting of cars, to reducing fuel consumption and to the use of different recycling materials. Consequently, decisions on product design and development must involve economic and technological as well as environmental considerations. In adequate conditions, the LCA methodology enables one to assist an effective integration of the environmental considerations in the decision-making process [1]. In this paper, a multi-material car component which is part of the current automotive brake system, has been modified by its original manufacturer. Such a modification included the use of a new multi-material injection moulding process and the consumption of recyclable materials. The new and the current component were comparatively assessed throughout their life cycles in order to evaluate their respective environmental impacts and, thus, to verify if the new component offers a lower environmental load. The results described in this paper are part of the outcome of a broader research project involving industrial companies, university, technological centres and research institutes based in Portugal, Spain and Germany. Main Features The car component under focus has four subcomponents whose base materials consist of steel and plastic. The LCA methodology is used to evaluate two scenarios describing the new car component, on the one hand, and the reference scenario, which consists of the existing car component, on the other. The former results from the selection of new subcomponents materials, aiming to use a new production process together with a recycling strategy. Results and Discussion The inventory analysis shows a lower energy consumption in the alternative scenario (4.2 MJ) compared to the reference scenario (6.1 MJ). Most of that energy is still non-renewable, relating in particular to crude consumption in the car use phase and in the production phase (transports and plastics production). The life cycle inventory analysis indicates also that the alternative scenario has lower air emissions of CO2, CO, NOx, SOx, NM VOC and PM10, as well as lower solid wastes and water emissions of oils and BOD5. Otherwise, the water emissions of undissolved substances and COD are higher for the alternative scenario. Most of the energy consumed and the air pollutants inventoried occur as a consequence of the use phase. Otherwise, for most of the life cycle water emissions inventoried and solid wastes, the production phase is the major contributor. The impact assessment, performed with the CML method, allows one to conclude that the alternative scenario exhibits lower results in all the impact categories. Both scenarios have similar environmental profiles, being: (i) the use phase, the major contributor for the abiotic depletion, global warming, photochemical oxidation, acidification and eutrophication; and (ii) the production phase, the main contributor for ozone depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity. The sensitivity analysis, with respect to the fuel consumption reduction value, the impact assessment method and the final disposal scenario, performed in this study allows one to confirm, as a main conclusion, that the alternative scenario is environmentally preferable to the reference scenario. Conclusion The results obtained through the application of the LCA methodology enable one to conclude that the alternative component has a lower environmental load than the reference component. Recommendations and Perspectives Considering that the time required for the inventory data collection is a critical issue in LCA practise, the insights provided by this particular case study are likely to be useful to product developers in the car component manufacturing industry, particularly to brake system manufacturers supporting the environmental design within the sector.  相似文献   

15.

Purpose

This article evaluates the parameters that influence the results of a life cycle assessment (LCA) of biogas production from maize and the conversion of biogas into electricity. The environmental impacts of biogas vary according to regional farming procedures and, therefore, the soil, climate conditions, crop yield, and cultivation management. This study focuses on these regional parameters and the existing infrastructure, including the number of installed biogas plants and their share of used heat.

Materials and methods

To assess the regional impact, the LCAs of maize cultivation, on the one hand, and the production and use of biogas, on the other, were performed for three different areas. These areas were the administrative districts of Celle, Hildesheim, and Goettingen; all located in the south of Lower Saxony, Germany. The areas differed in geographic location conditions, crop yield, and the number of installed biogas plants. The necessary data for modeling the cultivation of maize were derived from the specific regional and local parameters of each area. The most important parameters were the soil characteristics and the climate conditions for cultivating maize. The share of used heat from combined heat and power unit (CHP) was another relevant factor for biogas production and use.

Results

Our results demonstrate significant differences among the investigated areas. The smallest environmental impact of all the considered categories occurs in Goettingen and the largest in Celle. The net greenhouse gas emissions vary from 0.179?kg CO2 eq./kWhel in Celle to 0.058?kg CO2 eq./kWhel in Goettingen. This result is due to the maize cultivation system and the different credits for using heat from the CHP. Variances in energy crop cultivation result from different nitrogen and irrigation demands. In addition, despite higher applications of nitrogen fertilizer and irrigation, the maize yield is lower in Celle. The impact category of total fossil energy shows similar results to that of the greenhouse gas (GHG) emissions. The results range from ?0.274 to 0.175 kWh/kWhel. The results of acidification and eutrophication vary from 1.62 in Goettingen to 1.94?g SO2 eq./kWhel in Celle and respectively 0.330 to 0.397?g PO 4 3? eq./kWhel. These differences are primarily caused by maize cultivation, especially irrigation.

Conclusions and perspectives

Cultivating maize and using waste heat from the CHP were identified as the most influential parameters for the GHG emissions and total fossil energy demand. Regarding acidification and eutrophication, the most relevant factors are the application of digester output and the emissions from the CHP. Our results show the need to consider regional parameters in the LCA of bioenergies, particularly biogas production and use, especially if the LCA studies are used for generalized evaluations such as statements on the climate protection potential of biogas.  相似文献   

16.
The current case study was performed to determine and evaluate the environmental impacts, and to look for possible improvements in the production and distribution of a basic lager beer that is packed into multi-packs of glass bottles. The life cycle investigated includes the stages from agricultural production up to the delivering of products to the shops, the consumption phase has been excluded. Raw water treatment and energy production and use have been included, and the contribution of different sub-systems inside of the life cycle to climate change, acidification, eutrophication, oxygen depletion and summer smog were assessed. The investigation resulted with several suggestions for improving the product and environmental performance of brewery.  相似文献   

17.
Purpose

This study aims at finding the environmental impacts generated by an electric disk insulator supply chain, used for the distribution of electricity by an open wire system, through a case study. This study also aims at benchmarking the environmental impacts of an electric insulator manufacturing process by taking ideal condition of zero waste as reference.

Methods

Cradle-to-grave life cycle assessment (LCA) has been carried out by following the guidelines provided in ISO 14040 series standards and using Umberto NXT software. ReCiPe endpoint and ReCiPe midpoint impact assessment methodologies have been used to calculate environmental impacts under various categories. The primary data has been collected from a medium-scale manufacturer of electric disk insulators located at Bikaner in north-west India. The secondary data has been taken from ecoinvent 3.0 database and literature. The environmental impacts using endpoint assessment (ecosystem quality, human health, and resources) and midpoint assessment (climate change, fossil depletion, human toxicity, metal depletion, ozone depletion, terrestrial acidification, and water depletion) categories have been computed. Finally, the results are compared and benchmarked against the ideal zero waste condition using three different production scenarios. The limitation of this study is that the data has been collected only from one manufacturer and its supply chain.

Results and discussion

It has been found that the use of steel, electricity, and fuel; transportation of product; and disposal of water generate high environmental impacts in the supply chain. It has also been found that in the electric disk insulator supply chain, the raw material extraction phase has the highest environmental impacts followed by manufacturing, disposal, transportation, and installation phases. This study has also found that benchmark scenario “B” (zero waste condition) is environmentally more efficient in comparison to scenario “A” (actual recycling condition) and scenario “C” (maximum waste condition).

Conclusions

This study has identified that raw materials, resources, and processes in the supply chain of an electric disk insulator manufacturing unit are responsible for the environmental damage. The various manufacturing processes and installation of the electric disk insulators are similar for all manufacturers except the machinery efficiency and the generated waste. This study provides environmental impacts associated with an electric disk insulator manufacturing process under zero waste or ideal conditions (scenario B). These results are used as a benchmark to compare environmental performance of electric disk insulator supply chain operating under actual conditions.

  相似文献   

18.
The International Journal of Life Cycle Assessment - This paper aims to carry out a Product Environmental Footprint study of a Lebanese red wine, “Coteaux Les Cedres” by HF S.A.L...  相似文献   

19.
In recent years, liquid biofuels for transport have benefited from significant political support due to their potential role in curbing climate change and reducing our dependence on fossil fuels. They may also participate to rural development by providing new markets for agricultural production. However, the growth of energy crops has raised concerns due to their high consumption of conventional fuels, fertilizers and pesticides, their impacts on ecosystems and their competition for arable land with food crops. Low-input species such as Jatropha curcas , a perennial, inedible crop well adapted to semiarid regions, has received much interest as a new alternative for biofuel production, minimizing adverse effects on the environment and food supply. Here, we used life-cycle assessment to quantify the benefits of J. curcas biofuel production in West Africa in terms of greenhouse gas emissions and fossil energy use, compared with fossil diesel fuel and other biofuels. Biodiesel from J. curcas has a much higher performance than current biofuels, relative to oil-derived diesel fuels. Under West Africa conditions, J. curcas biodiesel allows a 72% saving in greenhouse gas emissions compared with conventional diesel fuel, and its energy yield (the ratio of biodiesel energy output to fossil energy input) is 4.7. J. curcas production studied is eco-compatible for the impacts under consideration and fits into the context of sustainable development.  相似文献   

20.

Purpose

The aim of the present paper is to describe the development of a life cycle assessment study of the service of potable water supply in Sicily, Italy. The analysis considers the stages of collection, treatment and distribution of potable water through the regional network, whilst the use stage of water is not included.

Methods

The selection of a methodological pattern coherently with the requirements of an environmental label, such as the EPDs, aims at allowing comparability among different studies.

Results and discussion

The analysis shows the shares of impacts along the life cycle chain, i.e. outputs by well fields and spring groups, purification and desalination plants, water losses in the waterworks, electrical consumption of waterworks systems and impacts of network maintenance. With regard to global warming potential (GWP), the impact of purification plants represents a 6–7 % share of the total, whilst desalination is at 74 %. Water losses in the waterworks show an impact of 15–17 %; the contribution owing to electrical consumption of waterworks systems and network maintenance results to be 3 %. Desalination plants represent the major contribution to all impact categories considered.

Conclusions

In respect to management issues, the most relevant impact categories resulted to be GWP, non-renewable energy resources and water consumption. Since the results for non-renewable energy resources are strictly connected to GWP emissions, carbon footprint and water footprint can be profitably used as single-issue indicators without the risk of burden shifting in studies aiming to evaluate the impact of potable water distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号