首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Deregulation of EGFR signaling is common in non-small cell lung cancers (NSCLC) and this finding led to the development of tyrosine kinase inhibitors (TKIs) that are highly effective in a subset of NSCLC. Mutations of EGFR (mEGFR) and copy number gains (CNGs) of EGFR (gEGFR) and HER2 (gHER2) have been reported to predict for TKI response. Mutations in KRAS (mKRAS) are associated with primary resistance to TKIs.

Methodology/Principal Findings

We investigated the relationship between mutations, CNGs and response to TKIs in a large panel of NSCLC cell lines. Genes studied were EGFR, HER2, HER3 HER4, KRAS, BRAF and PIK3CA. Mutations were detected by sequencing, while CNGs were determined by quantitative PCR (qPCR), fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH). IC50 values for the TKIs gefitinib (Iressa) and erlotinib (Tarceva) were determined by MTS assay. For any of the seven genes tested, mutations (39/77, 50.6%), copy number gains (50/77, 64.9%) or either (65/77, 84.4%) were frequent in NSCLC lines. Mutations of EGFR (13%) and KRAS (24.7%) were frequent, while they were less frequent for the other genes. The three techniques for determining CNG were well correlated, and qPCR data were used for further analyses. CNGs were relatively frequent for EGFR and KRAS in adenocarcinomas. While mutations were largely mutually exclusive, CNGs were not. EGFR and KRAS mutant lines frequently demonstrated mutant allele specific imbalance i.e. the mutant form was usually in great excess compared to the wild type form. On a molar basis, sensitivity to gefitinib and erlotinib were highly correlated. Multivariate analyses led to the following results: 1. mEGFR and gEGFR and gHER2 were independent factors related to gefitinib sensitivity, in descending order of importance. 2. mKRAS was associated with increased in vitro resistance to gefitinib.

Conclusions/Significance

Our in vitro studies confirm and extend clinical observations and demonstrate the relative importance of both EGFR mutations and CNGs and HER2 CNGs in the sensitivity to TKIs.  相似文献   

3.
Costa DB  Halmos B  Kumar A  Schumer ST  Huberman MS  Boggon TJ  Tenen DG  Kobayashi S 《PLoS medicine》2007,4(10):1669-79; discussion 1680

Background

Epidermal growth factor receptor (EGFR) mutations are present in the majority of patients with non-small cell lung cancer (NSCLC) responsive to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib. These EGFR-dependent tumors eventually become TKI resistant, and the common secondary T790M mutation accounts for half the tumors with acquired resistance to gefitinib. However, the key proapoptotic proteins involved in TKI-induced cell death and other secondary mutations involved in resistance remain unclear. The objective of this study was to identify the mechanism of EGFR TKI-induced apoptosis and secondary resistant mutations that affect this process.

Methods and Findings

To study TKI-induced cell death and mechanisms of resistance, we used lung cancer cell lines (with or without EGFR mutations), Ba/F3 cells stably transfected with EGFR mutation constructs, and tumor samples from a gefitinib-resistant patient. Here we show that up-regulation of the BH3-only polypeptide BIM (also known as BCL2-like 11) correlated with gefitinib-induced apoptosis in gefitinib-sensitive EGFR-mutant lung cancer cells. The T790M mutation blocked gefitinib-induced up-regulation of BIM and apoptosis. This blockade was overcome by the irreversible TKI CL-387,785. Knockdown of BIM by small interfering RNA was able to attenuate apoptosis induced by EGFR TKIs. Furthermore, from a gefitinib-resistant patient carrying the activating L858R mutation, we identified a novel secondary resistant mutation, L747S in cis to the activating mutation, which attenuated the up-regulation of BIM and reduced apoptosis.

Conclusions

Our results provide evidence that BIM is involved in TKI-induced apoptosis in sensitive EGFR-mutant cells and that both attenuation of the up-regulation of BIM and resistance to gefitinib-induced apoptosis are seen in models that contain the common EGFR T790M and the novel L747S secondary resistance mutations. These findings also suggest that induction of BIM may have a role in the treatment of TKI-resistant tumors.  相似文献   

4.
5.

Introduction

Methods used for epidermal growth factor receptor (EGFR) mutation testing vary widely. The impact of detection methods on the rates of response to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-wild type (wt) lung adenocarcinoma patients is unknown.

Methods

We recruited the Group-I patients to evaluate the efficacy of erlotinib in patients with EGFR-wt lung adenocarcinoma by either direct sequencing (DS) or mutant type-specific sensitive (MtS) methods in six medical centers in Taiwan. Cross recheck of EGFR mutations was performed in patients who achieved objective response to erlotinib and had adequate specimens. The independent Group-II lung adenocarcinoma patients whose EGFR mutation status determined by DS were recruited to evaluate the potential limitations of three MtS methods.

Results

In Group-I analysis, 38 of 261 EGFR-wt patients (14.6%) achieved partial response to erlotinib treatment. Nineteen patients (50.0%) had adequate specimens for cross recheck of EGFR mutations and 10 of them (52.6%) had changes in EGFR mutation status, 5 in 10 by DS and 5 in 9 by MtS methods originally. In Group-II analysis, 598 of 996 lung adenocarcinoma patients (60.0%) had detectable EGFR mutations. The accuracy rates of the three MtS methods, MALDI-TOF MS, Scorpions ARMS and Cobas, were 87.8%, 86.8% and 85.8%, respectively.

Conclusions

A significant portion of the erlotinib responses in EGFR-wt lung adenocarcinoma patients were related to the limitations of detection methods, not only DS but also MtS methods with similar percentages. Prospective studies are needed to define the proper strategy for EGFR mutation testing.  相似文献   

6.
Li C  Fang R  Sun Y  Han X  Li F  Gao B  Iafrate AJ  Liu XY  Pao W  Chen H  Ji H 《PloS one》2011,6(11):e28204

Purpose

We previously showed that 90% (47 of 52; 95% CI, 0.79 to 0.96) of lung adenocarcinomas from East Asian never-smokers harbored well-known oncogenic mutations in just four genes: EGFR, HER2, ALK, and KRAS. Here, we sought to extend these findings to more samples and identify driver alterations in tumors negative for these mutations.

Experimental Design

We have collected and analyzed 202 resected lung adenocarcinomas from never smokers seen at Fudan University Shanghai Cancer Center. Since mutations were mutually exclusive in the first 52 examined, we determined the status of EGFR, KRAS, HER2, ALK, and BRAF in stepwise fashion as previously described. Samples negative for mutations in these 5 genes were subsequently examined for known ROS1 fusions by RT-PCR and direct sequencing.

Results

152 tumors (75.3%) harbored EGFR mutations, 12 (6%) had HER2 mutations, 10 (5%) had ALK fusions all involving EML4 as the 5′ partner, 4 (2%) had KRAS mutations, and 2 (1%) harbored ROS1 fusions. No BRAF mutation were detected.

Conclusion

The vast majority (176 of 202; 87.1%, 95% CI: 0.82 to 0.91) of lung adenocarcinomas from never smokers harbor mutant kinases sensitive to available TKIs. Interestingly, patients with EGFR mutant patients tend to be older than those without EGFR mutations (58.3 Vs 54.3, P = 0.016) and patient without any known oncogenic driver tend to be diagnosed at a younger age (52.3 Vs 57.9, P = 0.013). Collectively, these data indicate that the majority of never smokers with lung adenocarcinoma could benefit from treatment with a specific tyrosine kinase inhibitor.  相似文献   

7.

Background

Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.

Materials and Methods

Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.

Results

Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.

Conclusions

Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non-small cell lung cancer, accompanying mutations in PIK3CA may confer gefitinib resistance.  相似文献   

8.

Background

It is important to select appropriate targeted therapies for subgroups of patients with lung adenocarcinoma who have specific gene alterations.

Methods

This prospective study was a multicenter project conducted in Taiwan for assessment of lung adenocarcinoma genetic tests. Five oncogenic drivers, including EGFR, KRAS, BRAF, HER2 and EML4-ALK fusion mutations, were tested. EGFR, KRAS, BRAF and HER2 mutations were assessed by MALDI-TOF MS (Cohort 1). EML4-ALK translocation was tested by Ventana method in EGFR-wild type patients (Cohort 2).

Results

From August 2011 to November 2013, a total of 1772 patients with lung adenocarcinoma were enrolled. In Cohort 1 analysis, EGFR, KRAS, HER2 and BRAF mutations were identified in 987 (55.7%), 93 (5.2%), 36 (2.0%) and 12 (0.7%) patients, respectively. Most of these mutations were mutually exclusive, except for co-mutations in seven patients (3 with EGFR + KRAS, 3 with EGFR + HER2 and 1 with KRAS + BRAF). In Cohort 2 analysis, 29 of 295 EGFR-wild type patients (9.8%) were positive for EML4-ALK translocation. EGFR mutations were more common in female patients and non-smokers and KRAS mutations were more common in male patients and smokers. Gender and smoking status were not correlated significantly with HER2, BRAF and EML4-ALK mutations. EML4-ALK translocation was more common in patients with younger age.

Conclusion

This was the first study in Taiwan to explore the incidence of five oncogenic drivers in patients with lung adenocarcinoma and the results could be valuable for physicians in consideration of targeted therapy and inclusion of clinical trials.  相似文献   

9.
10.
11.

Introduction

Targeting activating oncogenic driver mutations in lung adenocarcinoma has led to prolonged survival in patients harboring these specific genetic alterations. The prognostic value of these mutations has not yet been elucidated. The prevalence of recently uncovered non-coding somatic mutation in promoter region of TERT gene is also to be validated in lung cancer. The purpose of this study is to show the prevalence, association with clinicalpathological features and prognostic value of these factors.

Methods

In a cohort of patients with non-small cell lung cancer (NSCLC) (n = 174, including 107 lung adenocarcinoma and 67 lung squamous cell carcinoma), EGFR, KRAS, HER2 and BRAF were directly sequenced in lung adeoncarcinoma, ALK fusions were screened using FISH (Fluorescence in situ Hybridization).TERT promoter region was sequenced in all of the 174 NSCLC samples. Associations of these somatic mutations and clinicopathological features, as well as prognostic factors were evaluated.

Results

EGFR, KRAS, HER2, BRAF mutation and ALK fusion were mutated in 25.2%, 6.5%, 1.9%, 0.9% and 3.7% of lung adenocarcinomas. No TERT promoter mutation was validated by reverse-sided sequencing. Lung adenocarcinoma with EGFR and KRAS mutations showed no significant difference in Disease-free Survival (DFS) and Overall Survival (OS). Cox Multi-variate analysis revealed that only N stage and HER2 mutation were independent predictors of worse overall survival (HR = 1.653, 95% CI 1.219–2.241, P = 0.001; HR = 12.344, 95% CI 2.615–58.275, P = 0.002).

Conclusions

We have further confirmed that TERT promoter mutation may only exist in a very small fraction of NSCLCs. These results indicate that dividing lung adenocarcinoma into molecular subtypes according to oncogenic driver mutations doesn''t predict survival difference of the disease.  相似文献   

12.
BackgroundLung adenocarcinomas from patients who respond to the tyrosine kinase inhibitors gefitinib (Iressa) or erlotinib (Tarceva) usually harbor somatic gain-of-function mutations in exons encoding the kinase domain of the epidermal growth factor receptor (EGFR). Despite initial responses, patients eventually progress by unknown mechanisms of “acquired” resistance.ConclusionIn patients with tumors bearing gefitinib- or erlotinib-sensitive EGFR mutations, resistant subclones containing an additional EGFR mutation emerge in the presence of drug. This observation should help guide the search for more effective therapy against a specific subset of lung cancers.  相似文献   

13.

Background

The sensitivity of non-small cell lung cancer (NSCLC) patients to EGFR tyrosine kinase inhibitors (TKIs) is strongly associated with activating EGFR mutations. Although not as sensitive as patients harboring these mutations, some patients with wild-type EGFR (wtEGFR) remain responsive to EGFR TKIs, suggesting that the existence of unexplored mechanisms renders most of wtEGFR-expressing cancer cells insensitive.

Methodology/Principal Findings

Here, we show that acquired resistance of wtEGFR-expressing cancer cells to an EGFR TKI, gefitinib, is associated with elevated expression of breast cancer resistance protein (BCRP/ABCG2), which in turn leads to gefitinib efflux from cells. In addition, BCRP/ABCG2 expression correlates with poor response to gefitinib in both cancer cell lines and lung cancer patients with wtEGFR. Co-treatment with BCRP/ABCG2 inhibitors enhanced the anti-tumor activity of gefitinib.

Conclusions/Significance

Thus, BCRP/ABCG2 expression may be a predictor for poor efficacy of gefitinib treatment, and targeting BCRP/ABCG2 may broaden the use of gefitinib in patients with wtEGFR.  相似文献   

14.

Aims

To determine the prevalence and clinicopathological characteristics of BRAF V600E mutation and HER2 exon 20 insertions in Chinese lung adenocarcinoma (ADC) patients.

Methods

Given the fact that the driver mutations are mutually exclusive in lung ADCs, 204 EGFR/KRAS wild-type cases were enrolled in this study. Direct Sanger sequencing was performed to examine BRAF V600E and HER2 exon 20 mutations. The association of BRAF and HER2 mutations with clinicopathological characteristics was statistically analyzed.

Results

Among the 204 lung ADCs tested, 11 cases (5.4%) carried HER2 exon 20 insertions and 4 cases (2.0%) had BRAF V600E mutation. HER2 mutation status was identified to be associated with a non-smoking history (p<0.05). HER2 mutation occurs in 9.4% of never smokers (10/106), 8.7% of female (8/92) and 2.7% of male (3/112) in this selected cohort. All four BRAF mutated patients were women and three of them were never-smokers. No HER2 mutant patients harbor BRAF mutation.

Conclusions

HER2 and BRAF mutations identify a distinct subset of lung ADCs. Given the high prevalence of lung cancer and the availability of targeted therapy, Chinese lung ADC patients without EGFR and KRAS mutations are recommended for HER2 and BRAF mutations detection, especially for those never smokers.  相似文献   

15.
16.

Background

Somatic mutations of the epidermal growth factor receptor (EGFR) are reportedly associated with various responses in non-small cell lung cancer (NSCLC) patients receiving the anti-EGFR agents. Detection of the mutation therefore plays an important role in therapeutic decision making. The aim of this study was to detect EGFR mutations in formalin fixed paraffin embedded (FFPE) samples using both Scorpion ARMS and high resolution melt (HRM) assay, and to compare the sensitivity of these methods.

Results

All of the mutations were found in adenocarcinoma, except one that was in squamous cell carcinoma. The mutation rate was 45.7% (221/484). Complex mutations were also observed, wherein 8 tumours carried 2 mutations and 1 tumour carried 3 mutations.

Conclusions

Both methods detected EGFR mutations in FFPE samples. HRM assays gave more EGFR positive results compared to Scorpion ARMS.  相似文献   

17.

Background

Oncogenic mutations are powerful predictive biomarkers for molecularly targeted cancer therapies. For mutation detection patients have to undergo invasive tumor biopsies. Alternatively, archival samples are used which may no longer reflect the actual tumor status. Circulating tumor cells (CTC) could serve as an alternative platform to detect somatic mutations in cancer patients. We sought to develop a sensitive and specific assay to detect mutations in the EGFR gene in CTC from lung cancer patients.

Methods

We developed a novel assay based on real-time polymerase chain reaction (PCR) and melting curve analysis to detect activating EGFR mutations in blood cell fractions enriched in CTC. Non-small-cell lung cancer (NSCLC) was chosen as disease model with reportedly very low CTC counts. The assay was prospectively validated in samples from patients with EGFR-mutant and EGFR-wild type NSCLC treated within a randomized clinical trial. Sequential analyses were conducted to monitor CTC signals during therapy and correlate mutation detection in CTC with treatment outcome.

Results

Assay sensitivity was optimized to enable detection of a single EGFR-mutant CTC/mL peripheral blood. CTC were detected in pretreatment blood samples from all 8 EGFR-mutant lung cancer patients studied. Loss of EGFR-mutant CTC signals correlated with treatment response, and its reoccurrence preceded relapse.

Conclusions

Despite low abundance of CTC in NSCLC oncogenic mutations can be reproducibly detected by applying an unbiased CTC enrichment strategy and highly sensitive PCR and melting curve analysis. This strategy may enable non-invasive, specific biomarker diagnostics and monitoring in patients undergoing targeted cancer therapies.  相似文献   

18.

Introduction

Assessment of EGFR mutation in non-small cell lung cancer (NSCLC) patients is mandatory for optimization of pharmacologic treatment. In this respect, mutation analysis of circulating tumor cells (CTCs) may be desirable since they may provide real-time information on patient''s disease status.

Experimental Design

Blood samples were collected from 37 patients enrolled in the TRIGGER study, a prospective phase II multi-center trial of erlotinib treatment in advanced NSCLC patients with activating EGFR mutations in tumor tissue. 10 CTC preparations from breast cancer patients without EGFR mutations in their primary tumors and 12 blood samples from healthy subjects were analyzed as negative controls. CTC preparations, obtained by the Veridex CellSearch System, were subjected to ultra-deep next generation sequencing (NGS) on the Roche 454 GS junior platform.

Results

CTCs fulfilling all Veridex criteria were present in 41% of the patients examined, ranging in number between 1 and 29. In addition to validated CTCs, potential neoplastic elements were seen in 33 cases. These included cells not fulfilling all Veridex criteria (also known as “suspicious objects”) found in 5 (13%) of 37 cases, and isolated or clustered large naked nuclei with irregular shape observed in 33 (89%) cases. EGFR mutations were identified by NGS in CTC preparations of 31 (84%) patients, corresponding to those present in matching tumor tissue. Twenty-five (96%) of 26 deletions at exon 19 and 6 (55%) of 11 mutations at exon 21 were detectable (P = 0.005). In 4 (13%) cases, multiple EGFR mutations, suggesting CTC heterogeneity, were documented. No mutations were found in control samples.

Conclusions

We report for the first time that the CellSearch System coupled with NGS is a very sensitive and specific diagnostic tool for EGFR mutation analysis in CTC preparations with potential clinical impact.  相似文献   

19.

Background

Patients with KRAS mutations do not respond to epidermal growth factor receptor (EGFR) inhibitors and fail to benefit from adjuvant chemotherapy. Mutation analysis of KRAS is needed before starting treatment with monoclonal anti-EGFR antibodies in patients with metastatic colorectal cancer (mCRC). The objective of this study is to develop a multiplex allele-specific PCR (MAS-PCR) assay to detect KRAS mutations.

Methods

We developed a single-tube MAS-PCR assay for the detection of seven KRAS mutations (G12D, G12A, G12R, G12C, G12S, G12V, and G13D). We performed MAS-PCR assay analysis for KRAS on DNA isolated from 270 formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues. Sequences of all 270 samples were determined by pyrosequencing. Seven known point-mutation DNA samples diluted with wild-type DNA were assayed to determine the limitation of detection and reproducibility of the MAS-PCR assay.

Results

Overall, the results of MAS-PCR assay were in good concordance with pyrosequencing, and only seven discordant samples were found. The MAS-PCR assay reproducibly detected 1 to 2% mutant alleles. The most common mutations were G13D in codon 13 (49.17%), G12D (25.83%) and G12V (12.50%) in codon 12.

Conclusion

The MAS-PCR assay provides a rapid, cost-effective, and reliable diagnostic tool for accurate detection of KRAS mutations in routine FFPE colorectal cancer tissues.  相似文献   

20.

Background

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), gefitinib and erlotinib have been tested as maintenance therapy in patients with advanced non-small-cell lung cancer (NSCLC). The studies are quite heterogenous regarding study size and populations, and a synopsis of these data could give some more insight in the role of maintenance therapy with TKI.

Methods

In September 2012 we performed a search in the pubmed, EMBASE and Cochrane library databases for randomized phase III trials exploring the role of gefitinib or erlotinib in advanced non-small cell lung cancer. Through a rigorous selection process with specific criteria, five trials (n = 2436 patients) were included for analysis. Standard statistical methods for meta-analysis were applied.

Results

TKIs (gefitinib and erlotinib) significantly increased progression-free survival (PFS) [hazard ratio (HR) 0.63, 95% confidence interval (CI) 0.50–0.76, I2 = 78.1%] and overall survival (HR 0.84, 95% CI 0.76–0.93, I2 = 0.0%) compared with placebo or observation. The PFS benefit was consistent in all subgroups including stage, sex, ethnicity, performance status, smoking status, histology, EGFR mutation status, and previous response to chemotherapy. Patients with clinical features such as female, never smoker, adenocarcinoma, Asian ethnicity and EGFR mutation positive had more pronounced PFS benefit. Overall survival benefit was observed in patients with clinical features such as female, non-smoker, smoker, adenocarcinoma, and previous stable to induction chemotherapy. Severe adverse events were not frequent. Main limitations of this analysis are that it is not based on individual patient data, and not all studies provided detailed subgroups analysis.

Conclusions

The results show that maintenance therapy with erlotinib or gefitinib produces a significant PFS and OS benefit for unselected patients with advanced NSCLC compared with placebo or observation. Given the less toxicity of TKIs than chemotherapy and simple oral administration, this treatment strategy seems to be of important clinical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号