首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Recently, two of the 10 vertebrate protein kinase C (PKC) isoforms, PKCβII and PKCε, have been shown to bind specifically to actin filaments, suggesting that these kinases may regulate cytoskeletal dynamics. Here, we present evidence that two PKCs from the marine mollusk Aplysia californica , PKC Apl I, a Ca2+-activated PKC, and PKC Apl II, a Ca2+-independent PKC most similar to PKCε and η, also bind F-actin. First, they both cosedimented with purified actin filaments in a phorbol ester-dependent manner. Second, they both translocated to the Triton-insoluble fraction of the nervous system after phorbol ester treatment. PKC Apl II could also partially translocate to actin filaments and associate with the Triton-insoluble fraction in the absence of phorbol esters. Translocation to purified actin filaments was increased in the presence of a PKC inhibitor, suggesting that PKC phosphorylation reduces PKC bound to actin. Although both kinases bound F-actin, actin was not sufficient to activate the kinases. In support of a physiological role for actin-PKC interactions, immunochemical localization of PKC Apl II in neuronal growth cones revealed a striking colocalization with F-actin. Our results are consistent with a role for actin-PKC interactions in regulating cytoskeletal dynamics in Aplysia .  相似文献   

2.
Several types of evidence suggest that protein-tyrosine phosphorylation is important during the growth of neuronal processes, but few specific roles, or subcellular localizations suggestive of such roles, have been defined. We report here a localization of tyrosine-phosphorylated protein at the tips of growth cone filopodia. Immunocytochemistry using a mAb to phosphorylated tyrosine residues revealed intense staining of the tips of most filopodia of Aplysia axons growing slowly on a polylysine substrate, but of few filopodia of axons growing rapidly on a substrate coated with Aplysia hemolymph, which has growth-promoting material. Cytochalasin D, which causes F-actin to withdraw rapidly from the growth cone, caused the tyrosine-phosphorylated protein to withdraw rapidly from filopodia, suggesting that the protein associates or interacts with actin filaments. Phosphotyrosine has previously been found concentrated at adherens junctions, where bundles of actin filaments terminate, but video-enhanced contrast-differential interference contrast and confocal interference reflection microscopy demonstrated that the filopodial tips were not adherent to the substrate. Acute application of either hemolymph or inhibitors of protein-tyrosine kinases to neurons on polylysine resulted in a rapid loss of intense staining at filopodial tips concomitant with a lengthening of the filopodia (and their core bundles of actin filaments). These results demonstrate that tyrosine-phosphorylated protein can be concentrated at the barbed ends of actin filaments in a context other than an adherens junction, indicate an association between changes in phosphorylation and filament dynamics, and provide evidence for tyrosine phosphorylation as a signaling mechanism in the filopodium that can respond to environmental cues controlling growth cone dynamics.  相似文献   

3.
The formin family of proteins contributes to spatiotemporal control of actin cytoskeletal rearrangements during motile cell activities. The FMNL subfamily exhibits multiple mechanisms of linear actin filament formation and organization. Here we report novel actin-modifying functions of FMNL1 in breast adenocarcinoma migration models. FMNL1 is required for efficient cell migration and its three isoforms exhibit distinct localization. Suppression of FMNL1 protein expression results in a significant impairment of cell adhesion, migration, and invasion. Overexpression of FMNL1ɣ, but not FMNL1β or FMNL1α, enhances cell adhesion independent of the FH2 domain and FMNL1ɣ rescues migration in cells depleted of all three endogenous isoforms. While FMNL1ɣ inhibits actin assembly in vitro, it facilitates bundling of filamentous actin independent of the FH2 domain. The unique interactions of FMNL1ɣ with filamentous actin provide a new understanding of formin domain functions and its effect on motility of diverse cell types suggest a broader role than previously realized.  相似文献   

4.
5.
We elicited antibodies in rabbits to actin purified from body wall muscle of the marine mollusc, Aplysia californica. We found that this antiactin has an unusual specificity: in addition to reacting with the immunogen, it recognizes cytoplasmic vertebrate actins but not myofibrillar actin. Radioimmunoassay showed little or no cross-reaction with actin purified from either chicken gizzard or rabbit skeletal muscle. Immunocytochemical studies with human fibroblasts and L6 myoblasts revealed intense staining of typical cytoplasmic cables. Myofibrils were not stained after treatment of human and frog skeletal muscle with the antibody, although the distribution of immunofluorescence suggested that cytoplasmic actin is associated with membrane systems in the muscle fiber. The antibody may therefore be especially suited for studying the localization of cytoplasmic actin in skeletal muscle cells even in the presence of a great excess of the myofibrillar form.  相似文献   

6.
Khaĭtlina SIu 《Tsitologiia》2007,49(5):345-354
Actin sequences are conserved to a much greater degree than those in almost any other proteins, so that two cytoplasmic isoforms differ by only four of 374 amino acid residues. Nevertheless, the results of biochemical, immunocytochemical and molecular biology experiments demonstrate that appearance, amount and localization of actin isoforms are strongly controlled by cell machinery. Although at the early stages of cell differentiation expression of any actin gene is potentially possible, under normal physiological conditions, while differentiation proceeds, synthesis of specific actin isoforms is temporally regulated and the produced proteins are segregated spatially. Pathological situations of tissue injury or mammalian disease correlate either with up- and down-regulation of distinct actin genes returning to a fetal gene program or with a failure to sort actin isoforms. Different actin isoforms cannot substitute for each other, and changes in expression of specific actin genes are accompanied by alterations in cell structure and function suggesting that specific actin isoforms perform unique cellular functions. This article summarizes the data on segregation of actin isoforms in cell compartments and analyses the mechanisms suggested to explain spatial segregation of cytoplasmic actin isoforms within a cell.  相似文献   

7.
Actin is of fundamental importance to all eukaryotic cells. Of the six mammalian actins, beta (beta) and gamma (gamma) cytoplasmic are the isoforms found in all nonmuscle cells and differ by only four amino acids at the amino-terminal region. Both genes are regulated temporally and spatially, though no differences in protein function have been described. Using fluorescent double in situ hybridization we describe the simultaneous intracellular localization of both beta and gamma actin mRNA. This study shows that myoblasts differentially segregate the beta and gamma actin mRNAs. The distribution of gamma actin mRNA, only to perinuclear and nearby cytoplasm, suggests a distribution based on diffusion or restriction to nearby cytoplasm. The distribution of beta actin mRNA, perinuclear and at the cell periphery, implicates a peripheral localizing signal which is unique to the beta isoform. The peripheral beta actin mRNA corresponded to cellular morphologies, extending processes, and ruffling edges that reflect cell movement. Total actin and gamma actin protein steady-state distributions were identified by specific antibodies. gamma actin protein was found in both stress fibers and at the cell plasma membrane and does not correspond to its mRNA distribution. We suggest that localized protein synthesis rather than steady-state distribution functionally differentiates between the actin isoforms.  相似文献   

8.
Actin sequences are conserved to a much greater degree than those of almost any other proteins, such that two cytoplasmic isoforms differ by only 4 out of 374 amino acid residues. Nevertheless, the results of biochemical, immunocytochemical, and molecular biology experiments demonstrate that the appearance, amount, and localization of actin isoforms are strongly controlled by the cellular machinery. Although at the early stages of cell differentiation expression of any actin gene is potentially possible, under normal physiological conditions, while differentiation proceeds, synthesis of specific actin isoforms is temporally regulated and the produced proteins are segregated spatially. Pathological situations of a tissue injury or a mammalian disease correlate either with up-and down-regulation of distinct actin genes returning to a fetal gene program or with a failure to sort actin isoforms. Different actin isoforms cannot substitute for each other, and changes in the expression of specific actin genes are accompanied by alterations in cell structure and function, suggesting that specific actin isoforms perform unique cellular functions. This article summarizes the data on the segregation of actin isoforms in cell compartments and analyzes the mechanisms suggested to explain spatial segregation of cytoplasmic actin isoforms in the cell.  相似文献   

9.
Functional sorting of actin isoforms in microvascular pericytes   总被引:22,自引:10,他引:12       下载免费PDF全文
We characterized the form and distribution of muscle and nonmuscle actin within retinal pericytes. Antibodies with demonstrable specificities for the actin isoforms were used in localization and immunoprecipitation experiments to identify those cellular domains that were enriched or deficient in one or several actin isoforms. Living pericyte behavior was monitored with phase-contract video microscopy before fixation to identify those cellular areas that might preferentially be stained with either of the fluorescent antiactins or phallotoxins. Antibody and phallotoxin staining of pericytes revealed that nonmuscle actin is present within membrane ruffles, pseudopods, and stress fibers. In contrast, muscle actin could be convincingly localized in stress fibers, but not within specific motile areas of pericyte cytoplasm. To confirm and quantitatively extend the results obtained by fluorescence microscopy, nonionic and ionic detergents were used to selectively extract the motile or immobilized (stress fiber-containing) regions of biosynthetically labeled pericyte cytoplasm. Immunoprecipitated actins that were present within these discrete cellular domains were subjected to isoelectric focusing in urea-polyacrylamide gels before fluorographic analysis. Scanning laser densitometry of the focused actins could not reveal any detectable alpha-actin within those beta- and gamma-actin-enriched motile regions extracted with nonionic detergents. Moreover, when pericyte stress fibers are completely dissolved by ionic detergent lysis, three actin isoforms can be quantified to be present in a ratio of 1:2.75:3 (alpha:beta:gamma). These biochemical findings on biosynthetically labeled and immunoprecipitated pericyte actins confirm the fluorescent localization studies. While the regulatory events governing this actin sorting are unknown, it seems possible that such events may play important roles in controlling cell shape, adhesion, or the promotion of localized cell spreading.  相似文献   

10.
A novel isoform of cytoplasmic actin that binds poly-L-proline.   总被引:1,自引:1,他引:0       下载免费PDF全文
An actin-like protein was purified to apparent homogeneity from chick-embryo homogenates and chick-embryo fibroblasts by the use of poly-L-proline-agarose affinity chromatography; we therefore refer to this protein as PBP (poly-L-proline-binding protein). PBP binds to deoxyribonuclease-agarose, co-migrates with known actin standards on SDS/polyacrylamide-gel electrophoresis, and has an amino acid composition similar to that of actin. Linear peptide maps after digestion with Staphylococcus aureus proteinase reveal its apparent homology with gamma-actin; however, isoelectric-focusing experiments show that PBP is clearly more acidic than any of the three major isoforms of actin. PBP polymerizes in the presence of ATP to form fibrillar structures resembling actin paracrystalline aggregates. In chick-embryo fibroblasts, immunofluorescence with antibodies to PBP shows that its distribution is cytoplasmic: perinuclear staining of the cytoplasm, generalized cytoplasmic staining and peripheral fibrillar structures are evident. In contrast, antibodies specific for the (alpha, gamma)-actins reveal the typical stress fibre structures characteristic of fibroblastic cells. PBP appears to constitute a novel isoform of cellular actin, distinct from the known actin isoforms in terms of its lower isoelectric point, its ability to bind poly-L-proline and its distinct subcellular localization.  相似文献   

11.
Associations between plasma membrane-linked proteins and the actin cytoskeleton play a crucial role in defining cell shape and determination, ensuring cell motility and facilitating cell-cell or cell-substratum adhesion. Here, we present evidence that CEACAM1-L, a cell adhesion molecule of the carcinoembryonic antigen family, is associated with the actin cytoskeleton. We have delineated the regions involved in actin cytoskeleton association to the distal end of the CEACAM1-L long cytoplasmic domain. We have demonstrated that CEACAM1-S, an isoform of CEACAM1 with a truncated cytoplasmic domain, does not interact with the actin cytoskeleton. In addition, a major difference in subcellular localization of the two CEACAM1 isoforms was observed. Furthermore, we have established that the localization of CEACAM1-L at cell-cell boundaries is regulated by the Rho family of GTPases. The retention of the protein at the sites of intercellular contacts critically depends on homophilic CEACAM1-CEACAM1 interactions and association with the actin cytoskeleton. Our results provide new evidence on how the Rho family of GTPases can control cell adhesion: by directing an adhesion molecule to its proper cellular destination. In addition, these results provide an insight into the mechanisms of why CEACAM1-L, but not CEACAM1-S, functions as a tumor cell growth inhibitor.  相似文献   

12.
13.
Previous immunochemical and immunocytochemical studies have shown that an antibody to actin prepared from body wall muscle of the marine mollusc Aplysia californica is specific for vertebrate cytoplasmic actins. The ability of this anti-actin to distinguish between different forms of actin most likely reflects the recognition of amino acid sequences unique to cytoplasmic actins. We have confirmed the specificity of this antibody for cytoplasmic actins using nervous tissue as a source of cytoplasmic actin in further immunochemical studies. In addition to binding cytoplasmic actin in purified preparations, the antibody removed actin selectively from crude extracts of nervous tissue of some but not all of the species tested. Our results also suggest that tissue-specific differences in the distribution of cytoplasmic actins may exist. Immunofluorescence studies of Aplysia nervous tissue stained with anti-actin revealed that actin is present in the cell body and axonal processes of Aplysia neurons. Although the function of actin in nerve cells is not understood, the observed pattern of immunofluorescence staining is consistent with the idea that actin may be involved in movement within the axoplasm.  相似文献   

14.
In many vertebrate nonmuscle cells, the microfilament subunit protein, actin, exists as two isoforms, called beta and gamma, whose sequences differ only in their amino-terminal regions. We have prepared a peptide antibody specifically reactive with the amino-terminal sequence of gamma actin. This antibody reacted with nonmuscle actin as determined by Western blots of SDS gels, and reacted with the gamma, but not the beta, nonmuscle actin isoform as shown by Western blots of isoelectric focusing gels. In immunofluorescence experiments, the gamma peptide antibody stained microfilament bundles, ruffled edges, and the contractile ring of a variety of cultured cells, including mouse L cells, which have previously been reported to contain only the beta actin isoform (Sakiyama, S., S. Fujimura, and H. Sakiyama, 1981, J. Biol. Chem., 256:31-33). Double immunofluorescence experiments using the gamma peptide antibody and an antibody reactive with all actin isoforms revealed no differences in isoform localization. Thus, at the level of resolution of light microscopy, we have detected the gamma actin isoform in all microfilament-containing structures in cultured cells, and have observed no subcellular sorting of the nonmuscle actin isoforms.  相似文献   

15.
《FEBS letters》1998,441(2):337-341
The Dp71 dystrophin isoform has recently been shown to localize to actin filament bundles in early myogenesis. We have identified an actin binding motif within Dp71 that is not found in other dystrophin isoforms. Actin overlay assays and transfection of COS-7 cells with fusion proteins of wild type and mutated Flag epitope-tagged Dp71 demonstrate that this motif is necessary and sufficient to direct localization of Dp71 to actin stress fibers. Furthermore, this localization is independent of alternative splicing which alters the C-terminus of the protein. The identification of an actin binding site suggests Dp71 may function to anchor membrane receptors to the cytoskeleton.  相似文献   

16.
Phospholipase D (PLD) and ADP-ribosylation factor 6 (ARF6) have been implicated in vesicular trafficking and rearrangement of the actin cytoskeleton. We have explored the co-localization of rat PLD1b and rat PLD2 with wild type and mutant forms of ARF6 in HeLa cells and studied their activation by ARF6 and the role of the actin cytoskeleton. GFP-tagged PLD1 had a similar pattern to multivesicular and late endosomes and the trans-Golgi apparatus, but not to other organelles. When wild type or dominant negative ARF6 and PLD1 or PLD2 were co-expressed, they had a similar localization in cytosolic particles and at the cell periphery. In contrast, dominant active ARF6 caused cell shrinkage and had a similar localization with PLD1 and PLD2 in dense structures, containing the trans-Golgi apparatus and actin. Disruption of the actin cytoskeleton with cytochalasin D did not induce the formation of these structures. To determine, if ARF6 selectively activated PLD1 or PLD2, wild type and mutant forms of the ARF isoform were transfected together with PLD1 or PLD2. Wild type ARF6 did not affect either PLD isozyme, but dominant active ARF6 selectively activated PLD2 and dominant negative ARF6 selectively inhibited PLD2. In contrast, dominant active ARF1 or Rac1 stimulated both PLD isozymes but the ARF1 effect on PLD2 was very small. Cytochalasin D did not affect the activation of PLD by phorbol ester. The localizations of PLD and ARF6 were also analyzed by fractionation after methyl-beta-cyclodextrin extraction to deplete cholesterol. The results showed that all PLD isoforms and ARF6 mutants existed in the membrane fraction, but only wild type ARF6 was dependent on the presence of cholesterol. These experiments showed that wild type ARF6 had a similar location with PLD isoforms on cell staining, but it did not colocalize with PLD isoforms in fractionation experiments. It is proposed that activated ARF6 translocates to the cholesterol independent microdomain and then activates PLD2 there. It is further concluded that PLD2 is selectively activated by ARF6 in vivo and that disruption of the actin cytoskeleton does not affect this activation.  相似文献   

17.
Polarized distribution of actin isoforms in gastric parietal cells.   总被引:9,自引:5,他引:4       下载免费PDF全文
The actin genes encode several structurally similar, but perhaps functionally different, protein isoforms that mediate contractile function in muscle cells and determine the morphology and motility in nonmuscle cells. To reveal the isoform profile in the gastric monomeric actin pool, we purified actin from the cytosol of gastric epithelial cells by DNase I affinity chromatography followed by two-dimensional gel electrophoresis. Actin isoforms were identified by Western blotting with a monoclonal antibody against all actin isoforms and two isoform-specific antibodies against cytoplasmic beta-actin and gamma-actin. Densitometry revealed a ratio for beta-actin/gamma-actin that equaled 0.73 +/- 0.09 in the cytosol. To assess the distribution of actin isoforms in gastric glandular cells in relation to ezrin, a putative membrane-cytoskeleton linker, we carried out double immunofluorescence using actin-isoform-specific antibodies and ezrin antibody. Immunostaining confirmed that ezrin resides mainly in canaliculi and apical plasma membrane of parietal cells. Staining for the beta-actin isoform was intense along the entire gland lumen and within the canaliculi of parietal cells, thus predominantly near the apical membrane of all gastric epithelial cells, although lower levels of beta-actin were also identified near the basolateral membrane. The gamma-actin isoform was distributed heavily near the basolateral membrane of parietal cells, with much less intense staining of parietal cell canaliculi and no staining of apical membranes. Within parietal cells, the cellular localization of beta-actin, but not gamma-actin, isoform superimposed onto that of ezrin. In a search for a possible selective interaction between actin isoforms and ezrin, we carried out immunoprecipitation experiments on gastric membrane extracts in which substantial amounts of actin were co-eluted with ezrin from an anti-ezrin affinity column. The ratio of beta-actin/gamma-actin in the immunoprecipitate (beta/gamma = 2.14 +/- 0.32) was significantly greater than that found in the cytosolic fraction. In summary, we have shown that beta- and gamma-actin isoforms are differentially distributed in gastric parietal cells. Furthermore, our data suggest a preferential, but not exclusive, interaction between beta-actin and ezrin in gastric parietal cells. Finally, our results suggest that the beta- and gamma-actin-based cytoskeleton networks might function separately in response to the stimulation of acid secretion.  相似文献   

18.
The vertebrate post-synaptic density (PSD) is a region of high molecular complexity in which dynamic protein interactions modulate receptor localization and synaptic function. Members of the membrane-associated guanylate kinase (MAGUK) family of proteins represent a major structural and functional component of the vertebrate PSD. In order to investigate the expression and significance of orthologous PSD components associated with the Aplysia sensory neuron-motor neuron synapse, we have cloned an Aplysia Dlg-MAGUK protein, which we identify as Aplysia synapse associated protein (ApSAP). As revealed by western blot, RT-PCR, and immunocytochemical analyses, ApSAP is predominantly expressed in the CNS and is located in both sensory neuron and motor neurons. The overall amino acid sequence of ApSAP is 55–61% identical to Drosophila Dlg and mammalian Dlg-MAGUK proteins, but is more highly conserved within L27, PDZ, SH3, and guanylate kinase domains. Because these conserved domains mediate salient interactions with receptors and other PSD components of the vertebrate synapse, we performed a series of GST pull-down assays using recombinant C-terminal tail proteins from various Aplysia receptors and channels containing C-terminal PDZ binding sequences. We have found that ApSAP selectively binds to an Aplysia Shaker-type channel AKv1.1, but not to (i) NMDA receptor subunit AcNR1-1, (ii) potassium channel AKv5.1, (iii) receptor tyrosine kinase ApTrkl, (iv) glutamate receptor ApGluR1/4, (v) glutamate receptor ApGluR2/3, or (vi) glutamate receptor ApGluR7. These findings provide preliminary information regarding the expression and interactions of Dlg-MAGUK proteins of the Aplysia CNS, and will inform questions aimed at a functional analysis of how interactions in a protein network such as the PSD may regulate synaptic strength.  相似文献   

19.
Adherens and tight junctions play key roles in assembling epithelia and maintaining barriers. In cell culture zonula occludens (ZO)-family proteins are important for assembly/maturation of both tight and adherens junctions (AJs). Genetic studies suggest that ZO proteins are important during normal development, but interpretation of mouse and fly studies is limited by genetic redundancy and/or a lack of null alleles. We generated null alleles of the single Drosophila ZO protein Polychaetoid (Pyd). Most embryos lacking Pyd die with striking defects in morphogenesis of embryonic epithelia including the epidermis, segmental grooves, and tracheal system. Pyd loss does not dramatically affect AJ protein localization or initial localization of actin and myosin during dorsal closure. However, Pyd loss does affect several cell behaviors that drive dorsal closure. The defects, which include segmental grooves that fail to retract, a disrupted leading edge actin cable, and reduced zippering as leading edges meet, closely resemble defects in canoe zygotic null mutants and in embryos lacking the actin regulator Enabled (Ena), suggesting that these proteins act together. Canoe (Cno) and Pyd are required for proper Ena localization during dorsal closure, and strong genetic interactions suggest that Cno, Pyd, and Ena act together in regulating or anchoring the actin cytoskeleton during dorsal closure.  相似文献   

20.
Most cell types express several tropomyosin isoforms, the individual functions of which are poorly understood. In rat fibroblasts there are at least six isoforms; TM-1, TM-2, TM-3, TM-4, TM-5a, and TM-5b. TM-1 is the product of the beta gene. TM-4 is produced from the TM-4 gene, and TMs 2, 3, 5a, and 5b are the products of the alpha gene. To begin to study the localization and function of the isoforms in fibroblasts, cDNAs for TM isoforms 2, 3, 5a, and 5b were placed into bacterial expression vectors and used to produce TM isoforms. The bacterially produced TMs were determined to be full length by sequencing the amino- and carboxy termini. These TMs were found to bind to F-actin in vitro, with properties similar to that of skeletal muscle TM. In addition, competition experiments demonstrated that TM-5b was better than TM-5a in displacing other TM isoforms from F-actin in vitro. To investigate the intracellular localization of these fibroblast isoforms, each was derivatized with a fluorescent chromophore and microinjected into rat fibroblasts. TM-2, TM-3, TM-5a, and TM-5b were each found to associate along actin filaments. There was no preferred cellular location or subset of actin filaments for these isoforms. Furthermore, co-injection of two isoforms labeled with different fluorochromes showed identical staining. At the level of the light microscope, these isoforms from the alpha gene do not appear to achieve different functions by binding to particular subsets of actin filaments or locations in cells. Some alternative possibilities are discussed. The results show that bacterially produced TMs can be used to study in vitro and in vivo properties of the isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号