首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vascular smooth muscle cell (VSMC) migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP) secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu), however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.  相似文献   

2.
Podosomes are transient cell surface structures essential for degradation of extracellular matrix during cell invasion. Protein kinase C (PKC) is involved in the regulation of podosome formation; however, the roles of individual PKC isoforms in podosome formation and proteolytic function are largely unknown. Recently, we reported that PDBu, a PKC activator, induced podosome formation in normal human bronchial epithelial cells. Here, we demonstrate that phorbol-12,13-dibutyrate (PDBu)-induced podosome formation is mainly mediated through redistribution of conventional PKCs, especially PKCα, from the cytosol to the podosomes. Interestingly, although blocking atypical PKCζ did not affect PDBu-induced podosome formation, it significantly reduced matrix degradation at podosomes. Inhibition of PKCζ reduced recruitment of matrix metalloprotease 9 (MMP-9) to podosomes and its release and activation. Downregulation of MMP-9 by small interfering RNA (siRNA) or neutralization antibody also significantly reduced matrix degradation. The regulatory effects of PKCζ on matrix degradation and recruitment of MMP-9 to podosomes were PKCζ kinase activity dependent. PDBu-induced recruitment of PKCζ and MMP-9 to podosomes was blocked by inhibition of novel PKC with rottlerin or PKCδ siRNA. Our data suggest that multiple PKC isozymes form a signaling cascade that controls podosome formation and dynamics and MMP-9 recruitment, release, and activation in a coordinated fashion.  相似文献   

3.
Podosomes are adhesive structures on the ventral surface of cells that invade and degrade the extracellular matrix. Recently, we reported that phorbol 12,13‐dibutyrate (PDBu), a protein kinase C (PKC) activator, induced podosome formation in normal human bronchial epithelial (NHBE) cells, and atypical PKCζ regulated MMP‐9 recruitment to podosomes for its release and activation. The objective of this study was to explore signaling pathways that are involved in PKC activation‐induced podosome formation and matrix degradation. Herein, we found that PDBu increased phosphorylation of PI3K p85, Akt, Src, ERK1/2, and JNK. Inhibitors for PI3K, Akt, and Src suppressed PDBu‐induced podosome formation and matrix degradation. In contrast, blockers for MEK/ERK or JNK did not inhibit podosome formation but reduced proteolytic activity of podosomes. Inhibition of PKCζ activity with its pseudosubstrate peptide (PS)‐inhibited PDBu‐induced phosphorylation of MEK/ERK and JNK. On the other hand, inhibition of MEK/ERK or JNK pathway did not affect PKCζ phosphorylation, but reduced the recruitment of PKCζ and MMP‐9 to podosomes. We conclude that PKCζ may regulate MEK/ERK and JNK phosphorylation and in turn activated MEK/ERK and JNK may regulate the proteolytic activity of PDBu‐induced podosomes by influencing the recruitment of PKCζ and MMP‐9 to podosomes. J. Cell. Physiol. 228: 416–427, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Podosomes, important structures for adhesion and extracellular matrix degradation, are claimed to be involved in cell migration. In addition, podosomes are also reported to be of importance in tissue remodelling, e.g., in osteoclast-mediated bone resorption. Podosomes are highly dynamic actin-filament scaffolds onto which proteins important for their function, such as matrix metallo-proteases and integrins, attach. The dynamics of the podosomes require the action of many proteins regulating actin assembly and disassembly. One such protein, gelsolin, which associates to podosomes, has been reported to be important for podosome formation and function in osteoclasts. However, podosome-like structures have been reported in gelsolin-deficient dendritic cells, but the identity of these structures was not confirmed, and their dynamics and function was not investigated. Like many other cells, dendritic cells of the immune system also form matrix degrading podosomes. In the present study, we show that dendritic cells form podosomes independently of gelsolin, that there are no major alterations in their dynamics of formation and disassembly, and that they exhibit matrix-degrading function. Furthermore, we found that gelsolin is not required for TLR4-induced podosome disassembly. Thus, the actin cytoskeleton of podosomes involved in dendritic cell extracellular matrix degradation appears to be regulated differently than the cytoskeleton in podosomes of osteoclasts mediating bone resorption.  相似文献   

5.
Metalloproteinase-dependent tissue invasion requires the formation of podosomes and invadopodia for localized matrix degradation. Actin cytoskeleton remodeling via Arp2/3-mediated actin polymerization is essential for podosome formation, and dynamic microtubules have an important role in maintaining podosome turnover in macrophages and osteoclasts. Little is known, however, about the involvement of the intermediate filament cytoskeleton in formation, stabilization, and turnover of podosomes. Here we show that vimentin intermediate filaments colocalize with the early sites of podosome formation at the stress fiber - focal adhesion interface in cultured vascular smooth muscle cells, but do not directly contribute to podosome formation, or stabilization. In unstimulated A7r5 cells the cytolinker protein plectin poorly colocalized with vimentin and the microdomains, but following induction by phorbol ester accumulated in the rings that surround the podosomes. In plectin-deficient A7r5 cells actin stress fiber remodelling is reduced in response to PDBu, and small podosomes remain localized at stable actin stress fibres. Pharmacological inhibition of actomyosin contractility by blebbistatin leads to an aberrant localization of podosomes away from the cell periphery and induces failure of plectin to surround the outer perimeter of these invasive adhesions. Taken together, we conclude that plectin is involved in growth and maturation of podosomes by reducing focal adhesion and stress fiber turnover, and that actomyosin-dependent contractility is required for the peripheral localization and specific deposition of plectin at the podosome rings.  相似文献   

6.
Hepatocyte growth factor (HGF) is a pulmotrophic factor for the regeneration of injured pulmonary tissue. We investigated the role of HGF in basement membrane formation during wound healing by immortalized alveolar type II epithelial cells that could form a continuous basement membrane when they were cultured on collagen fibrils in the presence of entactin-contaminated laminin-1. Cells cultured with 5.0 ng/ml HGF neither formed a continuous basement membrane on collagen fibrils nor maintained a continuous basement membrane architecture on a basement membrane substratum. The cells showed increased secretion of matrix metalloproteinase-9 and urokinase-type plasminogen activator, and the HGF-induced inhibition of basement membrane formation was attenuated by addition of 200 ng/ml tissue inhibitor of matrix metalloproteinase-1. Cells sequentially exposed to HGF and 1.0 ng/ml transforming growth factor-beta1 had enhanced basement membrane formation compared with those receiving these reagents in the reverse order or concurrently. HGF simultaneously stimulated proliferation and migration of the cells so that it advanced wound closure on the basement membrane substratum. The present results indicate that the role of HGF in wound healing is the stimulation of reepithelization, but this factor may also contribute to the degradation of the basement membrane.  相似文献   

7.
The present study demonstrated that invadopodia are associated with invasion by degradation of matrix in prostate cancer cells PC3. To find out the presence of invadopodia in PC3 cells, we performed a few comparative analyses with osteoclasts, which utilize podosomes for migration. Our investigations indeed demonstrated that invadopodia are comparable to podosomes in the localization of Wiskott-Aldrich syndrome protein (WASP)/matrix metalloproteinase-9 and the degradation of matrix. Invadopodia are different from podosomes in the localization of actin/vinculin, distribution during migration, and the mode of degradation of extracellular matrix. Invadopodia enable polarized invasion of PC3 cells into the gelatin matrix in a time-dependent manner. Gelatin degradation was confined within the periphery of the cell. Osteoclasts demonstrated directional migration with extensive degradation of matrix underneath and around the osteoclasts. A pathway of degradation of matrix representing a migratory track was observed due to the rearrangement of podosomes as rosettes or clusters at the leading edge. Reducing the matrix metalloproteinase-9 levels by RNA interference inhibited the degradation of matrix but not the formation of podosomes or invadopodia. Competition experiments with TAT-fused WASP peptides suggest that actin polymerization and formation of invadopodia involve the WASP-Arp2/3 complex pathway. Moreover, PC3 cells overexpressing osteopontin (OPN) displayed an increase in the number of invadopodia and gelatinolytic activity as compared with PC3 cells and PC3 cells expressing mutant OPN in integrin-binding domain and null for OPN. Thus, we conclude that OPN/integrin alphavbeta3 signaling participates in the process of migration and invasion of PC3 cells through regulating processes essential for the formation and function of invadopodia.  相似文献   

8.
The vascular basement membrane (BM) is a thin and dense cross-linked extracellular matrix layer that covers and protects blood vessels. Understanding how cells cross the physical barrier of the vascular BM will provide greater insight into the potentially critical role of vascular BM breaching in cancer extravasation, leukocyte trafficking and angiogenic sprouting. In the last year, new evidence has mechanistically linked the breaching of vascular BM with the formation of specific cellular micro-domains known as podosomes and invadopodia. These structures are specialized cell-matrix contacts with an inherent ability to degrade the extracellular matrix. Specifically, the formation of podosomes or invadopodia was shown as an important step in vascular sprouting and tumor cell extravasation, respectively. Here, we review and comment on these recent findings and explore the functions of podosomes and invadopodia within the context of pathological processes such as tumor dissemination and tumor angiogenesis.  相似文献   

9.
Proliferative or synthetic vascular smooth muscle cells (VSMCs) are widely accepted to be mainly derived from the dedifferentiation or phenotypic modulation of mature contractile VSMCs, i.e., a phenotype switch from a normally quiescent and contractile type into a proliferative or synthetic form. However, this theory has been challenged by recent evidence that synthetic VSMCs predominantly originate instead from media-derived multipotent vascular stem cells (MVSCs). To test these hypotheses further, we re-examine whether the conventional rat aortic SMC (RASMC) culture involves the VSMC differentiation of MVSCs or the dedifferentiation of mature VSMCs and the potential mechanism for controlling the synthetic phenotype of RASMCs. We enzymatically isolated RASMCs and cultured the cells in both a regular growth medium (RGM) and a stem cell growth medium (SCGM). Regardless of culture conditions, only a small portion of freshly isolated RASMCs attaches, survives and grows slowly during the first 7 days of primary culture, while expressing both SMC- and MVSC-specific markers. RGM-cultured cells undergo a process of synthetic SMC differentiation, whereas SCGM-cultured cells can be differentiated into not only synthetic SMCs but also other somatic cells. Notably, compared with the RGM-cultured differentiated RASMCs, the SCGM-cultured undifferentiated cells exhibit the phenotype of MVSCs and generate greater amounts of reactive oxygen species (ROS) that act as a negative regulator of differentiation into synthetic VSMCs. Knockdown of phospholipase A2, group 7 (Pla2g7) suppresses ROS formation in the MVSCs while enhancing SMC differentiation of MVSCs. These results suggest that cultured synthetic VSMCs can be derived from the SMC differentiation of MVSCs with ROS as a negative regulator.  相似文献   

10.
In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.  相似文献   

11.
Invadosomes are specialised actin-based dynamic microdomains of the plasma membrane. Their occurrence has been associated with cell adhesion, matrix degrading and mechanosensory functions that make them crucial regulators of cell migration and invasion. Monocytic, cancer cell and Src-transformed cell invadosomes have been extensively described. Less well defined are the structures which form in other cell types, i.e., non-haematopoietic and non-transformed cells, exposed to specific stimuli. We herein describe the specificities of podosomes induced in aortic endothelial cells stimulated with TGFβ in vitro and in conditions that more closely resemble the in vivo situation. These podosomes display the typical architecture of monocytic podosomes. They organise into large rosette-shape superstructures where they exhibit collective dynamic behavior consisting in cycles of formation and regression. At the ultrastructural level, microfilament arrangements in individual podosomes were revealed. Oxygen levels and hemodynamic forces, which are key players in endothelial cell biology, both influence the process. In 3D environment, podosomes appear as globular structures along cellular extensions. A better characterization of endothelial podosomes has far-reaching implications in the understanding and, possibly, in the treatment of some vascular diseases.  相似文献   

12.
Saphenous vein (SV) grafts are commonly used to bypass coronary arteries that are diseased due to atherosclerosis. However, the development of intimal hyperplasia in such grafts can lead to patency-threatening stenosis and re-occlusion of the vessel. The proliferation and migration of smooth muscle cells (SMC) play key roles in the development of intimal hyperplasia, and an agent that inhibits both of these processes therefore has therapeutic potential. A prerequisite for SMC proliferation and migration in vivo is degradation of the basement membrane, achieved by secretion of the matrix-degrading gelatinases matrix metalloproteinase-2 (MMP-2) and MMP-9. Statins are cholesterol-lowering drugs that also have direct effects on SMC function. Here we report that neointima formation in organ-cultured human SV segments is inhibited by simvastatin, an effect that is associated with reduced MMP-9 activity. Additionally, our work shows that simvastatin not only inhibits proliferation, but importantly also inhibits invasion (migration through a matrix barrier), of cultured human SV SMC. Thus simvastatin treatment appears to inhibit neointima formation as a result of combined inhibition of SMC proliferation and invasion. The potential intracellular mechanisms by which statins affect SMC proliferation and migration, and thus attenuate intimal hyperplasia, are discussed, with particular emphasis on the role of MMP-9.  相似文献   

13.
Degradation and resynthesis of the extracellular matrix (ECM) are essential during tissue remodeling. Expansion of the vascular intima in atherosclerosis and restenosis following injury is dependent upon smooth muscle cell (SMC) proliferation and migration. The migration of SMC from media to intima critically depends on degradation of ECM protein by matrix metalloproteinases (MMPs). MMP inhibitors and eNOS gene transfer have been shown to inhibit SMC migration in vitro and neointima formation in vivo. Nitric oxide (NO) and cyclic-GMP have been implicated in the inhibition of VSMC migration. But, there are few studies addressing the role of NO signaling pathways on the expression of MMPs. Here we reported the involvement of cyclic-GMP-dependent protein kinase (PKG) (an important mediator of NO and cGMP signaling pathway in VSMC) on MMP-2 expression in rat aortic SMC. The goal of the present study was to gain insight into the possible involvement of PKG on MMP-2 in rat aortic SMC. MMP-2 protein and mRNA level and activity were downregulated in PKG-expressing cells as compared to PKG-deficient cells. In addition, the secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2) was increased in PKG-expressing cells as compared to PKG-deficient cells. PKG-specific membrane permeable peptide inhibitor (DT-2) reverses the process. Interestingly, little or no changes of MMP-9 were observed throughout the study. Taken together our data suggest the possible role of PKG in the suppression of MMP-2.  相似文献   

14.
Invadopodia and podosomes in tumor invasion   总被引:6,自引:3,他引:3  
Cell migration through the extracellular matrix (ECM) is necessary for cancer cells to invade adjacent tissues and metastasize to an organ distant from primary tumors. Highly invasive carcinoma cells form ECM-degrading membrane protrusions called invadopodia. Tumor-associated macrophages have been shown to promote the migratory phenotypes of carcinoma cells, and macrophages are known to form podosomes, similar structures to invadopodia. However, the role of invadopodia and podosomes in vivo remains to be determined. In this paper, we propose a model for possible functions and interactions of invadopodia and podosomes in tumor invasion, based on observations that macrophage podosomes degrade ECM and that podosome formation is regulated by colony-stimulating factor-1 signaling.  相似文献   

15.
Adhesion, migration and invasion of endothelial cells are prerequisites for the formation of blood vessels and have to be controlled on a subcellular level. We report that subconfluent human umbilical vein endothelial cells (HUVEC) are able to constitutively form podosomal adhesions that are sites of matrix metalloprotease concentration and matrix degradation. Importantly, incubation of serum-starved cells with VEGF or TNFalpha revealed the dependence of podosomes on cytokine signaling. Podosome formation was also stimulated by addition of monocytes to HUVEC. Microinjection/application of specific inhibitors or active/inactive mutants showed that regulatory pathways include Src kinase and RhoGTPase signaling, N-WASP activation and Arp2/3 complex-dependent actin nucleation. In sum, our data show that HUVEC displaying a migratory phenotype constitutively form f-actin-rich adhesions with podosomal characteristics downstream of cytokine signaling. We propose that HUVEC podosomes play an important role in endothelial cell migration and invasion.  相似文献   

16.
Infiltration of new tissue areas requires that a mammalian cell overcomes the physical and biochemical barrier of the surrounding extracellular matrix. Cell migration during embryonic development, and growth, invasion and dispersal of metastatic tumor cells depend to a large extent on the controlled degradation of extracellular matrix components. Localized degradation of the surrounding matrix is seen at defined adhesive (podosomes) and/or protrusive (invadopodia) locations in a variety of normal cells and aggressive carcinoma cells, suggesting that these membrane-associated cellular devices have a central role in mediating polarized migration in cells that cross-tissue boundaries. Here, we will discuss the recent advances and developments in this field, and provide our provisional outlook into the future understanding of the principles of focal extracellular matrix degradation by podosomes and invadopodia.  相似文献   

17.
Cell invasion of the extracellular matrix is prerequisite to cross tissue migration of tumor cells in cancer metastasis, and vascular smooth muscle cells in atherosclerosis. The tumor suppressor p53, better known for its roles in the regulation of cell cycle and apoptosis, has ignited much interest in its function as a suppressor of cell migration and invasion. How p53 and its gain-of-function mutants regulate cell invasion remains a puzzle and a challenge for future studies. In recent years, podosomes and invadopodia have also gained center stage status as veritable apparatus specialized in cell invasion. It is not clear, however, whether p53 regulates cell invasion through podosomes and invadopodia. In this review, evidence supporting a negative role of p53 in podosomes formation in vascular smooth muscle cells will be surveyed, and signaling nodes that may mediate this regulation in other cell types will be explored.  相似文献   

18.
Cell invasion of the extracellular matrix is prerequisite to cross tissue migration of tumor cells in cancer metastasis, and vascular smooth muscle cells in atherosclerosis. The tumor suppressor p53, better known for its roles in the regulation of cell cycle and apoptosis, has ignited much interest in its function as a suppressor of cell migration and invasion. How p53 and its gain-of-function mutants regulate cell invasion remains a puzzle and a challenge for future studies. In recent years, podosomes and invadopodia have also gained center stage status as veritable apparatus specialized in cell invasion. It is not clear, however, whether p53 regulates cell invasion through podosomes and invadopodia. In this review, evidence supporting a negative role of p53 in podosomes formation in vascular smooth muscle cells will be surveyed, and signaling nodes that may mediate this regulation in other cell types will be explored.  相似文献   

19.
In immature dendritic cells (DCs) podosomes form and turn over behind the leading edge of migrating cells. The Arp2/3 complex activator Wiskott-Aldrich Syndrome Protein (WASP) localises to the actin core of forming podosomes together with WASP-Interacting Protein (WIP). A second weaker Arp2/3 activator, cortactin, is also found at podosomes where it has been proposed to participate in matrix metalloproteinase (MMP) secretion. We have previously shown that WIP(-/-) DCs are unable to make podosomes. WIP binds to cortactin and in this report we address whether WIP regulates cortactin-mediated MMP activity. Using DCs derived from splenic murine precursors, we found that wild-type cells were able to localise MMPs at podosomes where matrix degradation takes place. In contrast, WIP(-/-) DCs remain able to synthesise MMPs but do not degrade the extracellular matrix. Infection of WIP KO DCs with lentivirus expressing WIP restored both podosome formation and their ability to degrade the extracellular matrix, implicating WIP-induced podosomes as foci of functional MMP location. When WIP KO DCs were infected with a mutant form of WIP lacking the cortactin-binding domain (WIPΔ110-170) DCs were only able to elaborate disorganised podosomes that were unable to support MMP-mediated matrix degradation. Taken together, these results suggest a role for WIP not only in WASP-mediated actin polymerisation and podosome formation, but also in cortactin-mediated extracellular matrix degradation by MMPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号