首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Life cycle assessment of soybean-based biodiesel in Argentina for export   总被引:2,自引:0,他引:2  

Background, aim and scope

Regional specificities are a key factor when analyzing the environmental impact of a biofuel pathway through a life cycle assessment (LCA). Due to different energy mixes, transport distances, agricultural practices and land use changes, results can significantly vary from one country to another. The Republic of Argentina is the first exporter of soybean oil and meal and the third largest soybean producer in the world, and therefore, soybean-based biodiesel production is expected to significantly increase in the near future, mostly for exportation. Moreover, Argentinean biodiesel producers will need to evaluate the environmental performances of their product in order to comply with sustainability criteria being developed. However, because of regional specificities, the environmental performances of this biofuel pathway can be expected to be different from those obtained for other countries and feedstocks previously studied. This work aims at analyzing the environmental impact of soybean-based biodiesel production in Argentina for export. The relevant impact categories account for the primary non-renewable energy consumption (CED), the global warming potential (GWP), the eutrophication potential (EP), the acidification potential (AP), the terrestrial ecotoxicity (TE), the aquatic ecotoxicity (AE), the human toxicity (HT) and land use competition (LU). The paper tackles the feedstock and country specificities in biodiesel production by comparing the results of soybean-based biodiesel in Argentina with other reference cases. Emphasis is put on explaining the factors that contribute most to the final results and the regional specificities that lead to different results for each biodiesel pathway.

Materials and methods

The Argentinean (AR) biodiesel pathway was modelled through an LCA and was compared with reference cases available in the ecoinvent® 2.01 database, namely, soybean-based biodiesel production in Brazil (BR) and the United States (US), rapeseed-based biodiesel production in the European Union (EU) and Switzerland (CH) and palm-oil-based biodiesel production in Malaysia (MY). In all cases, the systems were modelled from feedstock production to biodiesel use as B100 in a 28 t truck in CH. Furthermore, biodiesel pathways were compared with fossil low-sulphur diesel produced and used in CH. The LCA was performed according to the ISO standards. The life cycle inventory and the life cycle impact assessment (LCIA) were performed in Excel spreadsheets using the ecoinvent® 2.01 database. The cumulative energy demand (CED) and the GWP were estimated through the CED for fossil and nuclear energy and the IPCC 2001 (climate change) LCIA methods, respectively. Other impact categories were assessed according to CML 2001, as implemented in ecoinvent. As the product is a fuel for transportation (service), the system was defined for one vehicle kilometre (functional unit) and was divided into seven unit processes, namely, agricultural phase, soybean oil extraction and refining, transesterification, transport to port, transport to the destination country border, distribution and utilisation.

Results

The Argentinean pathway results in the highest GWP, CED, AE and HT compared with the reference biofuel pathways. Compared with the fossil reference, all impact categories are higher for the AR case, except for the CED. The most significant factor that contributes to the environmental impact in the Argentinean case varies depending on the evaluated category. Land provision through deforestation for soybean cultivation is the most impacting factor of the AR biodiesel pathway for the GWP, the CED and the HT categories. Whilst nitrogen oxide emissions during the fuel use are the main cause of acidification, nitrate leaching during soybean cultivation is the main factor of eutrophication. LU is almost totally affected by arable land occupation for soybean cultivation. Cypermethrin used as pesticide in feedstock production accounts for almost the total impact on TE and AE.

Discussion

The sensitivity analysis shows that an increase of 10% in the soybean yield, whilst keeping the same inputs, will reduce the total impact of the system. Avoiding deforestation is the main challenge to improve the environmental performances of soybean-based biodiesel production in AR. If the soybean expansion can be done on marginal and set-aside agricultural land, the negative impact of the system will be significantly reduced. Further implementation of crops’ successions, soybean inoculation, reduced tillage and less toxic pesticides will also improve the environmental performances. Using ethanol as alcohol in the transesterification process could significantly improve the energy balance of the Argentinean pathway.

Conclusions

The main explaining factors depend on regional specificities of the system that lead to different results from those obtained in the reference cases. Significantly different results can be obtained depending on the level of detail of the input data, the use of punctual or average data and the assumptions made to build up the LCA inventory. Further improvement of the AR biodiesel pathways should be done in order to comply with international sustainability criteria on biofuel production.

Recommendations and perspectives

Due to the influence of land use changes in the final results, more efforts should be made to account for land use changes others than deforestation. More data are needed to determine the part of deforestation attributable to soybean cultivation. More efforts should be done to improve modelling of interaction between variables and previous crops in the agricultural phase, future transesterification technologies and market prices evolution. In order to assess more accurately the environmental impact of soybean-based biodiesel production in Argentina, further considerations should be made to account for indirect land use changes, domestic biodiesel consumption and exportation to other regions, production scale and regional georeferenced differentiation of production systems.  相似文献   

2.

Purpose

The dairy sector covers multiple activities related to milk production and treatment for alimentary uses. Different dairy products are available in the markets, with yoghurt being the second most important in terms of production. The goal of this study was to analyse from a cradle-to-grave approach the environmental impacts and energy balance derived from the yoghurt (solid, stirred and drinking yoghurts) manufacture process in a specific dairy factory processing 100 % Portuguese raw milk.

Methods

The standard framework of life cycle assessment (LCA) was followed and inventory data were collected on site in the dairy factory and completed using the literature and databases. The following impact categories were evaluated adopting a CML method: abiotic depletion (ADP), acidification (AP), eutrophication (EP), global warming (GWP), ozone layer depletion (ODP), land competition (LC) and photochemical oxidants formation (POFP), with the energy analysis carried out based on the cumulative non-renewable fossil and nuclear energy demand (CED). A mass allocation approach was considered for the partitioning of the environmental burdens between the different products obtained since not only yoghurts are produced but also dairy fodder.

Results and discussion

The key processes from an environmental point of view were identified. Some of the potential results obtained were in line with other specific related studies where dairy systems were assessed from an LCA perspective. The production of the milk-based inputs (i.e. raw milk, concentrated and powdered milk) was the main factor responsible of the environmental loads and energy requirements, with remarkable contributions of 91 % of AP, 92 % of EP and 62 % of GWP. Other activities that have important environmental impacts include the production of the energy requirements in the dairy factory, packaging materials production and retailing. Potential alternatives were proposed in order to reduce the contributions to the environmental profile throughout the life cycle of the yoghurt. These alternatives were based on the minimisation of milk losses, reductions of distances travelled and energy consumption at retailing and household use, as well as changes to the formulation of the animal feed. All of these factors derived from light environmental reductions.

Conclusions

The main reductions of the environmental impact derived from yoghurt production can be primarily obtained at dairy farms, although important improvements could also be made at the dairy factory.  相似文献   

3.

Background and purpose

Numerous life cycle assessments (LCAs) have been conducted on the environmental impacts of beverage packaging systems. With such a potentially rich source of knowledge available, it seemed worthwhile to conduct a comprehensive evaluation of those existing studies. This paper describes a recent ‘meta analysis’, whose goal it was to provide a structured overview of LCAs on beverage cartons and other packaging systems from past years in order to answer two key questions: (1) Is it possible to draw general conclusions regarding the environmental performance (in terms of strengths and weaknesses) of beverage cartons in comparison to alternative packaging systems from these existing LCAs? (2) If certain trends arise across these LCA studies regarding the environmental performance of beverage cartons compared to other packaging systems for beverages, what can be said on their validity and limitations?

Methods

The meta analysis presented covers 22 LCA studies, all of which fulfil three criteria: (1) full life cycle approach, (2) beverage carton must be among the products evaluated in study, and (3) comparative approach. Each of these studies was categorised either as a core study (if focussed on Europe, conducted in 2000 or later, and peer reviewed) or as a basic study. Next to providing detailed comparisons of the analysed studies, the full report on the meta analysis was designed to allow a quick understanding of their main characteristics (or ‘profiles’). Similarities and differences were highlighted both in terms of results and the applied methodologies (e.g., key settings) and the validity and limitations of the findings were stated. Additionally, further environment-related topics of special interest to stakeholders in the beverage packaging industry were addressed.

Results, discussion, and conclusions

For certain environmental impact indicators/inventory categories, the LCA studies covered in this meta analysis indicate general trends regarding the performance of beverage cartons versus alternative packaging systems. For climate change, cumulated energy demand/fossil resource consumption, and acidification, all regarded by the majority of all studies, beverage cartons mostly have the most favourable results, while in terms of land use for forestry, they clearly require the largest area. For summer smog and terrestrial eutrophication, the result ‘pattern’ points towards a favourable picture for beverage cartons; however, fewer LCA studies provide results for these impact categories. For other environmental aspects, where the results of the analysed studies vary strongly, no clear pattern can be made out. Several aspects were covered in too few LCA studies in order for an overall trend or lack thereof to become visible, and still others—which in part have been receiving increased attention in the past years—are not addressed in any of the analysed core or basic studies.
  相似文献   

4.

Purpose

Approximately 46,000 t/day of packaging waste was generated in China in 2010, of which, 2,500 t was composite packaging waste. Due to the lack of recycling technology and an imperfect recovery system, most of this waste is processed in sanitary landfills. An effective packaging waste management system is needed since this waste not only uses up valuable resources, but also increases environmental pollution. The purpose of this study is to estimate the environmental impact of the treatment scenarios in composite packaging waste which are commonly used in China, to determine the optimum composite packaging waste management strategy, and to design new separating and recycling technology for composite packaging, based on the life cycle assessment (LCA) results.

Methods

To identify the best treatment for composite packaging waste, the LCA software SimaPro 7.1.6 was used to assist in the analysis of the environmental impacts, coupled with the impact assessment method Eco-Indicator 99. LCA for composite packaging waste management was carried out by estimating the environmental impacts of the four scenarios most often used in China: landfill, incineration, paper recycling, and separation of polyethylene and aluminum. One ton of post-consumption Tetra Pak waste was selected as the functional unit. The data on the mass, energy fluxes, and environmental emissions were obtained from literature and site investigations.

Results and discussion

Landfill—scenario 1—was the worst waste management option. Paper recycling—scenario 3—was more environmentally friendly than incineration, scenario 2. Scenario 4, separating out polyethylene and aluminum, was established based on the LCA result, and inventory data were obtained from the demonstration project built by this research. In scenario 4, the demonstration project for the separation of polyethylene and aluminum was built based on the optimum conditions from single-factor and orthogonal experiments. Adding this flow process into the life cycle of composite packaging waste treatment decreased the environmental impacts significantly.

Conclusions

The research results can provide useful scientific information for policymakers in China to make decisions regarding composite packaging waste. Incineration could reduce more environmental impacts in the respiratory inorganics category, and separation of polyethylene and aluminum, in the fossil fuel category. If energy saving is the primary governmental goal, the separation of polyethylene and aluminum would be the better choice, while incineration would be the better choice for emission reduction.  相似文献   

5.

Purpose

The purpose of this paper is to provide an improved (up-to-date) insight into the environmental burden of textiles made of the base materials cotton, polyester (PET), nylon, acryl, and elastane. The research question is: Which base material and which life cycle stage (cradle-to-gate as well as cradle-to-grave) have the biggest impact on the environment?

Methods

Life cycle inventory (LCI) data are collected from the literature, life cycle assessment (LCA) databases, and emission registration database of the Dutch government, as well as communications with both manufacturing companies of production equipment and textile companies. The output of the calculations is presented in four single indicators: Eco-costs 2012 (a prevention-based indicator), CO2 equivalent (carbon footprint), cumulative energy demand (CED), and ReCiPe (a damage-based indicator).

Results and discussion

From an analysis of the data, it becomes clear that the environmental burden is not only a function of the base materials (cotton, PET, nylon, acryl, and elastane) but also of the thickness of the yarn (for this research, the range of 50–500 dtex is examined). The authors propose that the environmental burden of spinning, weaving, and knitting is a function of 1/yarn size. The cradle-to-grave analysis from raw material extraction to discarded textile demonstrates that textiles made out of acryl and PET have the least impact on the environment, followed by elastane, nylon, and cotton. The use phase has less relative impact than it is suggested in the classical literature.

Conclusions

The impact of spinning and weaving is relatively high (for yarn thicknesses of less than 100 dtex), and from the environmental point of view, knitting is better than weaving. LCA on textiles can only be accurate when the yarn thickness is specified. In case the functional unit also indicates the fabric per square meter, the density must be known. LCA results of textile products over the whole value chain are case dependent, especially when dyeing and finishing processes and the use phase and end-of-life are included in the analysis. Further LCI data studies on textiles and garments are urgently needed to lower the uncertainties in contemporary LCA of textile materials and products.  相似文献   

6.

Background, aim and scope

The evaluation of packaging’s environmental performance usually concentrates on a comparison of different packaging materials or designs. Another important aspect in life cycle assessment (LCA) studies on packaging is the recycling or treatment of packaging wastes. LCA studies of packed food include the packaging with specific focus on the contribution of the packaging to the total results. The consumption behaviour is often assessed only roughly. Packaging is facilitating the distribution of goods to the society. Broader approaches, which focus on the life cycle of packed goods, including the entire supply system and the consumption of goods, are necessary to get an environmental footprint of the system with respect to sustainable production and consumption.

Materials and methods

A full LCA study has been conducted for two food products: coffee and butter packed in flexible packaging systems. The aim was to investigate the environmental performance of packaging with respect to its function within the life cycle of goods. The study looks at the environmental relevance of stages and interdependencies within the life cycle of goods whilst taking consumers’ behaviour and portion sizes into consideration. The impact assessment is based on the following impact categories: non-renewable cumulative energy demand (CED), climate change, ozone layer depletion (ODP), acidification, and eutrophication.

Results

The study shows that the most relevant environmental aspects for a cup of coffee are brewing (i.e. the heating of water) and coffee production. Transport and retail packaging are of minor importance. Brewing and coffee production have an impact share between 40% (ODP, white instant coffee) and 99% (eutrophication, black coffee). Milk added for white coffee is relevant for this type of preparation. The instant coffee in the one-portion stick-pack needs more packaging material per cup of coffee and is prepared by a kettle with lower energy demand, such as a coffee machine, thus leading to higher shares of the retail packaging in all indicators. A one-portion stick-pack can prevent wastage and resources related to coffee production can be saved. The most relevant aspect regarding the life cycle of butter is butter production, dominated by the provision of milk. Over 80% of the burdens in butter production stem from the provision of milk for all indicators discussed. Regarding climate change, methane and dinitrogen monoxide, emissions of milk cows and fodder production are most relevant. Fertilisation during livestock husbandry is responsible for most burdens regarding acidification and eutrophication. The distribution and selling stage influences the indicators CED and ODP distinctly. The reasons are, on the one hand, the relatively energy-intensive storage in supermarkets and, on the other hand, the use of refrigerants for chilled storage and transportation. The storage of butter in a refrigerator for 30 days is responsible for about 10% of the CED.

Discussion

Several aspects have been modelled in a sensitivity analysis. The influence of coffee packaging disposal is very small due to the general low influence of packaging. In contrast, the brewing behaviour is highly relevant for the environmental impact of a cup of coffee. That applies similarly to the type of heating device—i.e. using a kettle or an automatic coffee machine. Wastage leads to a significant increase of all indicators. Under the wastage scenario, the coffee from one-portion stick-packs has a considerable better environmental performance concerning all indicators because, in case of instant coffee wastage of hot water and in case of ground coffee wastage of prepared coffee, has been predicted. Regardless of urban or countryside distances, grocery shopping has a low impact. The storage time of butter is relevant for the results in the indicator non-renewable CED. This is mainly the case when butter is stored as stock in the freezer. The end of life treatment of the packaging system has practically no influence on the results. Grocery shopping is of limited importance no matter which means of transport are used or which distances are regarded. Spoilage or wastage is of great importance: a spoilage/wastage of one third results in about 49% increased impacts compared to the standard case for all indicators calculated.

Conclusions

The most important factors concerning the environmental impact from the whole supply chain of a cup of coffee are the brewing of coffee, its cultivation and production and the milk production in case of white coffee. The study highlights consumer behaviour- and packaging-related measures to reduce the environmental impact of a cup of coffee. The most relevant measures reducing the environmental impacts of butter consumption are the optimisation of the milk and butter production. Another important factor is the consumers’ behaviour, i.e. the reduction of leftovers. The consumer can influence impacts of domestic storage using efficient and size-adequate appliances. The impacts of packaging in the life cycle of butter are not of primary importance.

Recommendations and perspectives

This study shows that, in the case of packaging industry, a reduction of relevant environmental impacts can only be achieved if aspects indirectly influenced by the packaging are also taken into account. Thus, the packaging industry should not only aim to improve the production process of their packages, but also provide packages whose functionality helps to reduce other more relevant environmental impacts in the life cycle such as, for example, losses. Depending on the product, tailor-made packaging may also help to increase overall resource efficiency.
  相似文献   

7.

Purpose

Disposable beverage bottles made of polyethylene terephthalate (PET) stand in sharp contrast to many other disposable plastic packaging systems in the US for their high level of post-consumer recovery for recycling. This is due in part to container deposit programs in several US states, such as the California Redemption Value (CRV) program. We investigate the impacts of PET bottle recycling in the CRV program to evaluate its effectiveness at reducing environmental burdens.

Methods

We develop a life cycle model using standard process LCA techniques. We use the US LCI database to describe the energy production infrastructure and the production of primary materials. We describe the inventory and logistical requirements for materials recovery on the basis of state-maintained statistics and interviews with operators and industry representatives. We report inventory indicators describing energy, freight, and waste disposal requirements. We report several impact indicators based on CML and TRACI-2.0 techniques. We apply system expansion to compare post-consumer activities to produce secondary polymer against equivalent primary production.

Results and discussion

While bottle collection is distributed across the state, processing is more centralized and occurs primarily near urban centers. The average distance traveled by a bottle from discard to recovery is 145–175 km. Recycling requires 0.45–0.66 MJ of primary energy/L of beverage, versus 3.96 MJ during the pre-consumer phase. Post-consumer environmental impacts are significantly lower than pre-consumer impacts, with the exception of eutrophication. The results are robust to model sensitivity, with allocation of fuel for bottle collection being the most significant parameter. Curbside collection is slightly more energy efficient than consumer drop-off, and is subject to smaller parametric uncertainty. Recycling has the potential for net environmental benefits in five of seven impact categories, the exceptions being smog (marginal benefits) and eutrophication (increased impacts).

Conclusions

California’s decentralized program for collecting and processing PET bottles has produced a system which generates a large stream of post-consumer material with minimal environmental impact. The selection of a reclamation locale is the most significant factor influencing post-consumer impacts. If secondary PET displaces primary material, several environmental burdens can be reduced.

Recommendations and perspectives

Our results suggest that deposit programs on disposable packaging are an effective policy mechanism to increase material recovery and reduce environmental burdens. Deposit programs for other packaging systems should be considered.  相似文献   

8.

Purpose

A framework for the inclusion of land use impact assessment and a set of land use impact indicators has been recently proposed for life cycle assessment (LCA) and no case studies are available for forest biomass. The proposed methodology is tested for Scandinavian managed forestry; a comparative case study is made for energy from wood, agro-biomass and peat; and sensitivity to forest management options is analysed.

Methods

The functional unit of this comparative case study is 1 GJ of energy in solid fuels. The land use impact assessment framework of the United Nations Environment Programme and the Society of Environmental Toxicology and Chemistry (UNEP-SETAC) is followed and its application for wood biomass is critically analysed. Applied midpoint indicators include ecological footprint and human appropriation of net primary production, global warming potential indicator for biomass (GWPbio-100) and impact indicators proposed by UNEP-SETAC on ecosystem services and biodiversity. Options for forest biomass land inventory modelling are discussed. The system boundary covers only the biomass acquisition phase. Management scenarios are formulated for forest and barley biomass, and a sensitivity analysis focuses on impacts of land transformations for agro-biomass.

Results and discussion

Meaningful differences were found in between solid biofuels from distinct land use classes. The impact indicator results were sensitive to land occupation and transformation and differed significantly from inventory results. Current impact assessment method is not sensitive to land management scenarios because the published characterisation factors are still too coarse and indicate differences only between land use types. All indicators on ecosystem services and biodiversity were sensitive to the assumptions related with land transformation. The land occupation (m2a) approach in inventory was found challenging for Scandinavian wood, due to long rotation periods and variable intensities of harvests. Some suggestions of UNEP-SETAC were challenged for the sake of practicality and relevance for decision support.

Conclusions

Land use impact assessment framework for LCA and life cycle impact assessment (LCIA) indicators could be applied in a comparison of solid bioenergy sources. Although forest bioenergy has higher land occupation than agro-bioenergy, LCIA indicator results are of similar magnitude or even lower for forest bioenergy. Previous literature indicates that environmental impacts of land use are significant, but it remains questionable if these are captured with satisfactory reliability with the applied LCA methodology, especially for forest biomass. Short and long time perspectives of land use impacts should be studied in LCA with characterisation factors for all relevant timeframes, not only 500 years, with a forward-looking perspective. Characterisation factors need to be modelled further for different (forest) land management intensities and for peat excavation.  相似文献   

9.

Purpose

Life cycle assessment (LCA) studies allow understanding all relevant processes and environmental impacts involved in the life cycle of products. However, in order to fully assess their sustainability, these studies should be complemented by economic (LCC) and societal analyses. In this context, the present work aims at assessing all costs (internal and external) and the environmental performance associated to the full life cycle of specific engineering products. These products are lighting columns for roadway illumination made with three different materials: a glass fibre reinforced polymer composite, steel and aluminium.

Methods

The LCA/LCC integrated methodology used was based in a ??cradle-to-grave?? assessment which considers the raw materials production, manufacture, on-site installation, use and maintenance, dismantlement and end-of-life (EoL) of the lighting columns. The fossil fuels environmental impact category was selected as the key environmental impact indicator to perform the integrated environmental and cost analysis.

Results

The potential total costs obtained for the full life cycle of the lighting columns demonstrated that the one made in steel performs globally worse than those made in composite or aluminium. Although the three systems present very similar internal costs, the steel column has higher external costs in the use phase that contribute for its higher total cost. This column has very high costs associated to safety features, since it constitutes a significant risk to the life of individuals. The raw material and column production stages are the main contributors for the total internal life cycle costs. The EoL treatment is a revenue source in all systems because it generates energy (in the case of the composite incineration) or materials (in the case of metal recycling). The composite and aluminium lighting columns present similar ??cradle-to-grave?? life cycle total cost. However, until the dismantlement phase, the aluminium column presents the highest environmental impact, whereas in the EoL treatment phase this scenario is reversed. The ??cradle-to-grave?? life cycle potential total cost and the environmental impact (fossil fuels) indicator of the steel lighting column are higher than those of the other columns.

Conclusions

Even though the uncertainties in the LCC are larger if external costs are included, their consideration when modelling the economic performance of engineering products increases the probability of developing a more sustainable solution from a societal perspective.  相似文献   

10.

Purpose

Biopolymers are considered to be environmentally friendlier than petroleum-based polymers, but little is known about their environmental performance against petroleum-based products. This paper presents the results of a life cycle assessment (LCA) of two prototype biocomposite formulations produced by extrusion of wood fibre with either polylactic acid (PLA) or a blend of PLA and locally produced thermoplastic starch (TPS).

Methods

The study followed the LCA methodology outlined in the two standards set out by the International Organization for Standardization (ISO): ISO 14040 and ISO 14044 of 2006. A life cycle inventory (LCI) for the biocomposite formulations was developed, and a contribution analysis was performed to identify the significant inputs. Environmental performances of the two formulations were then compared with each other and polypropylene (PP), a petroleum-based polymer. The US Environmental Protection Agency’s impact assessment method, “TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts”, was combined with Cumulative Energy Demand (a European method) in order to characterize the inventory flows. Environmental impact categories chosen for the analysis were the following: global warming, stratospheric ozone depletion, acidification of land and water, eutrophication, smog, human health (respiratory, carcinogenic, and non-carcinogenic) effects and ecotoxicity.

Results and discussion

We found that PLA is the significant input which contributes mostly to fossil fuel consumption, acidification and respiratory and smog effects. Impacts from PLA transport from the faraway source significantly added more burden to its contributions. TPS causes less environmental burden compared to PLA; the environmental performance of the biocomposite improved when a blend of PLA and TPS is used in formulating the biocomposite. The two formulations performed better than PP in all the environmental impact categories except eutrophication effects, which is important on a regional basis.

Conclusions

The following conclusions were drawn from this study:
  • PLA is the environmentally significant input among the three raw materials.
  • TPS causes less environmental burden than PLA. Environmental performance of the biocomposite improves in the life cycle energy consumption, fossil energy use, ozone depletion and non-carcinogenic impact categories when a blend of PLA and TPS is used.
  • The biocomposite can outperform PP in all the impact categories except eutrophication effects if manufactured using hydroelectricity.
The biopolymer could be a potential alternative to PP as it could cause less of a burden to the environment on a cradle-to-gate basis. Environmental impacts at the complete life cycle levels should be looked into in order to fully understand its potential.  相似文献   

11.

Purpose

Impacts of activities related to freshwater use are gaining interest among the life cycle assessment (LCA) community and several approaches are nowadays available in the literature. However, the general trend still is to ignore the assessment of its impact or, luckily, its inclusion on the inventory. This paper describes a procedure to incorporate water source information at the inventory level and evaluate the influence of that profile on the environmental impact assessment level.

Methods

The methodology lies on two main elements: the “irrigation mix” concept and the freshwater ecosystem impact indicator already defined in the literature. By doing so, the results obtained can be easily integrated in LCA studies of irrigated crops, or more complex studies with agricultural ingredients, where only information regarding the amount (but not the origin) of irrigation water is available.

Results and discussion

The results make more visible the benefits associated to the use of nonconventional, artificial water sources, by quantifying the improvement achieved on the water stress of a specific basin. Besides, the irrigation mix gives a better picture of the real contribution of irrigation to other impact categories (here, the global warming potential). Finally, the results were applied in a LCA study of lettuce production (an irrigated product cultivated in the studied region), and the method was analyzed against the criteria defined by the International Reference Life Cycle Data System handbook.

Conclusions

The inclusion of the water mix in the inventory level (irrigation profile) as well as in the impact assessment level (water stress index) is straightforward to apply by LCA practitioners, resulting in a more realistic assessment of the impacts of freshwater consumption associated to crops. The implementation on a case study allowed the quantification of promoting alternative water sources in a region suffering from significant water stress as well as to improve knowledge on the environmental impact associated to freshwater consumed by one of the irrigated crops grown there. We recommend using the approach defined here in order to check its applicability to other river basins and products.  相似文献   

12.

Purpose

Several articles within the area of green chemistry often promote new techniques or products as ‘green’ or ‘more environmentally benign’ than their conventional counterpart although these articles often do not quantitatively assess the environmental performance. In order to do this, life cycle assessment (LCA) is a valuable methodology. However, on the planning stage, a full-scale LCA is considered to be too time consuming and complicated. Two reasons for this have been recognised, the method is too comprehensive and it is hard to find inventory data. In this review, key parameters are presented with the purpose to reduce the time-consuming steps in LCA.

Methods

In this review, several LCAs of so-called ‘green chemicals’ are analysed and key parameters and methodological concerns are identified. Further, some conclusions on the environmental performance of chemicals were drawn.

Results and discussion

For fossil-based platform chemicals several LCAs exists but for chemicals produced with industrial biotechnology or from renewable resources the number of LCAs is limited, with the exception of biofuels, for which a large number of studies are made. In the review, a significant difference in the environmental performance of bulk and fine chemicals was identified. The environmental performance of bulk chemicals are closely connected to the production of the raw material and thereby different land use aspects. Here, a lot can be learnt from biofuel LCAs. In many of the reviewed articles focusing on bulk chemicals a comparison regarding fossil and renewable raw material was done. In most of the comparisons the renewable alternative turned out to be more environmentally preferable, especially for the impact on GWP and energy use. However, some environmental concerns were identified as important to include to assess overall environmental concern, for example eutrophication and the use of land.

Conclusions

To assess the environmental performance of green chemicals, quantitative methods are needed. For this purpose, both simple metrics and more comprehensive methods have been developed, one recognised method being LCA. However, this method is often too time consuming to be valuable in the process planning stage. This is partly due to a lack of available inventory data, but also because the method itself is too comprehensive. Here, key parameters for the environmental performance and methodological concerns were described to facilitate a faster and simpler use of LCA of green chemicals in the future.  相似文献   

13.

Purpose

Life cycle assessment (LCA) methodology is a well-established analytical method to quantify environmental impacts, which has been mainly applied to products. However, recent literature would suggest that it has also the potential as an analysis and design tool for processes, and stresses that one of the biggest challenges of this decade in the field of process systems engineering (PSE) is the development of tools for environmental considerations.

Method

This article attempts to give an overview of the integration of LCA methodology in the context of industrial ecology, and focuses on the use of this methodology for environmental considerations concerning process design and optimization.

Results

The review identifies that LCA is often used as a multi-objective optimization of processes: practitioners use LCA to obtain the inventory and inject the results into the optimization model. It also shows that most of the LCA studies undertaken on process analysis consider the unit processes as black boxes and build the inventory analysis on fixed operating conditions.

Conclusions

The article highlights the interest to better assimilate PSE tools with LCA methodology, in order to produce a more detailed analysis. This will allow optimizing the influence of process operating conditions on environmental impacts and including detailed environmental results into process industry.  相似文献   

14.

Purpose

Concentrating solar power (CSP) plants based on parabolic troughs utilise auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs.

Methods

A complete life cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35 % of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative energy demands (CED) and energy payback times (EPT) were also determined for each scenario.

Results and discussion

Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh and acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilisation of NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar-only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions.

Conclusions

Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilisation. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.  相似文献   

15.

Purpose

The objective of this case study is to identify the relevant processes needed in the environmental assessment of the end of life of a building and to identify the demolition process variables that significantly affect energy consumption and emissions of greenhouse gases. Different scenarios of demolition, based on three alternatives for managing construction and demolition waste (C&DW) generated during demolition works, are analyzed. This study is based upon typical construction and demolition practices and waste management in Spain.

Methods

Life cycle assessment (LCA) methodology is applied to assess objectively and quantitatively different C&DW management plans during the design phase and to identify the significant environmental aspects. The impact categories considered are global warming potential and human toxicity potential. Furthermore, the indicator primary energy (non renewable energy from fossil fuels) is also studied.

Results

Design of C&DW management plans to enhance the recovery of waste, reducing significantly the selected environmental indicators, was assessed in this study. Waste transport from the demolition work to the treatment plant and the transport of the non-recyclable fraction to the final disposal, as well as the fuel consumption in hydraulic demolition equipment and in the loading/unloading equipment of the treatment plants, are the most significant environmental aspects associated with the management plan based on a selective demolition, whereas in a conventional demolition process, the main environmental aspect is waste transport from the demolition work to final disposal.

Conclusions

LCA studies allow an assessment of different demolition processes. A tool for recording environmental data has been developed. This tool provides in a systematic manner life cycle inventory and life cycle impact assessment of the end of life of a building, facilitating the study of management plans in the design phase.  相似文献   

16.
17.
Design of a sustainable packaging in the food sector by applying LCA   总被引:1,自引:0,他引:1  

Purpose

The choice of a sustainable packaging alternative is a key issue for the improvement of the environmental performances of a product, both from a production perspective and end-of-life management. The present study is focused on the life cycle assessment (LCA) of two packaging alternatives of a poultry product, in particular a polystyrene-based tray and an aluminum bowl (70 wt% primary and 30 wt% secondary aluminum) were considered.

Methods

The LCA was performed according to ISO 14040-44 and following a “from-cradle-to-grave” perspective. The following stages were considered: production, use phase (i.e., cooking), and end-of-life. Different end-of-life scenarios were hypothesized. Greenhouse Gas Protocol, Cumulative Energy Demand, and ILCD midpoint method were used in the impact assessment (LCIA).

Results and discussion

The aluminum bowl was carefully designed in order to allow its use during the cooking stage of the poultry product in the oven and to reduce the cooking time (40 min instead of 50 min needed when using a conventional bowl) at 200 °C: cooking time reduction allows electric energy savings equal to 0.21 kWh (1.38 kWh instead of 1.59 kWh). Electric energy savings become of primary importance to reduce overall emissions, in particular CO2 eq emissions, especially in those countries such as Italy and Germany where there is a predominance of fossil fuels in the electric energy country mix.

Conclusions

Over the entire life cycle of the two alternatives considered (taking into account production, transport, cooking, and end-of-life), cooking stage has the most impact; so, the specific design of the packaging bowl/tray can allow significant lowering of the overall CO2 eq emissions. In addition, when designing an aluminum-based packaging, the content of the secondary material can be significantly increased in order to reach higher sustainability during the production stage.  相似文献   

18.

Purpose

While life cycle assessment (LCA) has standardized methods for assessing emission impacts, some comparable methods for the accounting or impact assessment of resource use exist, but are not as mature or standardized. This study contributes to the existing research by offering a comprehensive comparison of the similarities and differences of different resource indicators, in particular those based on thermodynamics, and testing them in a case study on titania (titanium dioxide pigment) produced in Panzhihua city, southwest China.

Materials and methods

The system boundary for resource indicators is defined using a thermodynamic hierarchy at four levels, and the case data for titania also follow that hierarchy. Seven resource indicators are applied. Four are thermodynamics-based??cumulative energy demand (CED), solar energy demand (SED), cumulative exergy demand (CExD), and cumulative exergy extraction from the natural environment (CEENE)??and three have different backgrounds: abiotic resource depletion potential, environmental priority strategies, and eco-indicator 99. Inventory data for the foreground system has been collected through on-site interviews and visits. Background inventory data are from the database ecoinvent v2.2. Characterizations factors are based on the CML-IA database covering all major methods. Computations are with the CMLCA software.

Results and discussion

The scores of resource indicators of the chloride route for titania system are lower than that of the sulfate route by 10?C35?%, except in terms of SED. Within the four thermodynamic indicators for resources, CED, CExD, and CEENE have similar scores, while their scores are five orders of magnitude lower than the SED score. Atmospheric resources do not contribute to the SED or CEEND score. Land resources account for a negligible percentage to the SED score and a small percentage to the CEENE score. Non-renewable resources have a dominant contribution to all seven resource indicators. The global production of titania would account for 0.12 and 0.14?% of the total anthropogenic non-renewable resource demand in terms of energy and exergy, respectively.

Conclusions

First, we demonstrate the feasibility of thermodynamic resource indicators. We recommend CEENE as the most appropriate one within the four thermodynamic resource indicators for accounting and characterizing resource use. Regarding the case study on the titania produced in China, all the resource indicators except SED show that the sulfate route demands more resource use than the chloride route.  相似文献   

19.

Purpose

The aim of this study is to use life cycle assessment (LCA) to compare the relative environmental performance of the treatment using Trametes versicolor with a common method such as activated carbon adsorption. This comparison will evaluate potential environmental impacts of the two processes. This work compiles life cycle inventory data for a biological process that may be useful for other emergent biotechnological processes in water and waste management. LCA was performed to evaluate the use of a new technology for the removal of a model metal-complex dye, Grey Lanaset G, from textile wastewater by means of the fungus T. versicolor. This biological treatment was compared with a conventional coal-based activated carbon adsorption treatment to determine which alternative is preferable from an environmental point of view.

Materials and methods

The study is based on experimental research that has tested the novel process at the pilot scale. The analysis of the biological system ranges from the production of the electricity and ingredients required for the growth of the fungus and ends with the composting of the residual biomass from the process. The analysis of the activated carbon system includes the production of the adsorbent material and the electricity needed for the treatment and regeneration of the spent activated carbon. Seven indicators that measure the environmental performance of these technologies are included in the LCA. The indicators used are climate change, ozone depletion, human toxicity, photochemical oxidant formation, terrestial acidification, freshwater eutrophication, marine eutrophication, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, metal depletion and fossil depletion.

Results

The results show that the energy use throughout the biological process, mainly for sterilisation and aeration, accounts for the major environmental impacts with the inoculum sterilisation being the most critical determinant. Nevertheless, the biological treatment has lower impacts than the physicochemical system in six of these indicators when steam is generated directly on site. A low-grade carbon source as an alternative to glucose might contribute to reduce the eutrophication impact of this process.

Conclusions

The LCA shows that the biological treatment process using the fungus T. versicolor to remove Grey Lanaset G offers important environmental advantages in comparison with the traditional activated carbon adsorption method. This study also provides environmental data and an indication of the potential impacts of characteristic processes that may be of interest for other applications in the field of biological waste treatment and wastewater treatment involving white-rot fungi.  相似文献   

20.

Purpose

The two main reasons for producing biomethane as renewable fuel are reduction of climate impacts and depletion of fossil resources. Biomethane is expected to be sustainable, but how sustainable is it actually? This article contributes to the clarification. Therefore, the environmental impacts of several biomethane facilities all over Europe were assessed. A special focus is put on the differences between the facilities as they follow different production routes.

Methods

The method used for evaluation is life cycle assessment (LCA) applied in a well-to-wheel approach. This enables to show the overall performance in terms of global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), photochemical ozone creation potential (POCP) and PE fossil. The system boundary includes the entire chain from biogas production to upgrading, distribution and use. For evaluating the different production routes several years of measuring data, calculating and improving the LCA models in close cooperation with the plant operators were carried out.

Results and discussion

The evaluation of the production routes shows a high reduction potential compared to fossil fuels. Regarding the depletion of fossil resources, the amounts vary between the sites, but the reduction is at least 50 % and reaches almost 100 % reductions at some sites. The reduction of GWP is at least 65 %, because waste flows free of environmental burdens are used almost exclusively as substrate. Other dominant factors are power and heat demand, methane losses to the environment and the use of by-products, e.g. fertilizer.

Conclusions

Despite this caveat, the evaluated systems demonstrate the possible positive results of renewable fuel production if done properly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号