首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ventilation frequency, volume, oxygen uptake, and oxygen transport by the blood have been studied in unrestrained octopus,Octopus vulgaris before, during and after recovery from 20 min of enforced activity. Exercise increased oxygen consumption 2.8 fold. The percentage utilisation of oxygen from the branchial water is maintained or increased at around 35% during activity and the calculated ventilation volume increases by 3 times. Prior to exercise the hemocyanin in arterial blood is 98% saturated and there is 83% utilisation of the oxygen in the blood. During activity there is remarkably little change in blood parameters so that the hemocyanin in the arterial blood remains at 96% saturation and oxygen utilisation is 90%. Cardiac output was calculated to have risen 2.5 fold during activity. As thePO2 gradients across the gill do not change significantly during exercise the major adaptation which can account for an increase in oxygen consumption must be a 3 fold increase in the transfer factor. At rest 22% of the total CO2 present in the blood is excreted during its passage through the gills and this rises to 32% during activity. There is no accumulation of CO2 and only a slight acidification of the blood during activity. A significant respiratory and metabolic acidosis is avoided and the hemocyanin continues to function normally.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
The splanchnic circulation can make a major contribution to blood flow changes. However, the role of the splanchnic circulation in the reflex adjustments to the blood pressure increase during isometric exercise is not well documented. The central command and the muscle chemoreflex are the two major mechanisms involved in the blood pressure response to isometric exercise. This study aimed to examine the behaviour of the superior mesenteric artery during isometric handgrip (IHG) at 30% maximal voluntary contraction (MVC). The pulsatility index (PI) of the blood velocity waveform of the superior mesenteric artery was taken as the study parameter. A total of ten healthy subjects [mean age, 21.1 (SEM 0.3) years] performed an IHG at 30% MVC for 90 s. At 5 s prior to the end of the exercise, muscle circulation was arrested for 90 s to study the effect of the muscle chemoreflex (post exercise arterial occlusion, PEAO). The IHG at 30% MVC caused a decrease in superior mesenteric artery PI, from 4.84 (SEM 1.57) at control level to 3.90 (SEM 1.07) (P = 0.015). The PI further decreased to 3.17 (SEM 0.70) (P = 0.01) during PEAO. Our results indicated that ergoreceptors may be involved in the superior mesenteric artery vasodilatation during isometric exercise.  相似文献   

10.
11.
12.
The temperature sensitivity of the human cardiac pacemaker was investigated during exhaustive exercise. From graded runs to exhaustion, we established the relationship between maximum exercise heart rate (HRmax) and rectal temperature (Tr). After warm-up periods of varying intensity and duration, four male subjects completed 4 to 6 runs each, each run performed on a separate day. For every subject there was a strong linear correlation between HRmax and Tr (r = 0.79 to 0.96). Various measures of the temperature sensitivity were: linear sensitivity, 8.8 +/- 4.3 beats min-1.degrees C-1; Q10, 1.6 +/- 0.4 and the Arrhenius constant, mu, 35.9 +/- 16.6 kJ.mol-1. At HRmax the value for linear temperature sensitivity was similar to, but the values for Q10 and mu lower than, those observed previously for intrinsic heart rate. Sympathetic influence on the cardiac pacemaker during exercise may cause this reduction, by shifting the pacemaker location to cells with a lower temperature sensitivity, or by altering a rate-limiting step determining the diastolic pacemaker potential.  相似文献   

13.
A total of 14 healthy subjects [means (SD): 27.6 (3.8) years; body mass 77.8 (6.6) kg; height 183 (6) cm] performed endurance exercise to exhaustion at 100% of the individual anaerobic threshold (Th(an)) on a cycle ergometer (mean workload 207 (55) W; lactate concentrations 3.4 (1.2) mmol.l-1; duration 83.8 (22.2) min, including 5 min at 50% of individual Th(an)). Leucocyte subpopulations were measured by flow cytometry and catecholamines by radioimmunological methods. Blood samples were taken before and several times during exercise. Values were corrected for plasma volume changes and analysed using ANOVA for repeated measures. During the first 10 min of exercise, of all cell subpopulations the natural killer cells (CD3-CD16/CD56+) increased the most (229%). Also CD3+CD16/CD56+ (84%), CD8+CD45RO- (69%) cells, eosinophils (36%) and monocytes (62%) increased rapidly during that time. CD3+, CD3+HLA-DR+, CD4+CD45RO+, CD4+CD45RO-, CD8+CD45RO+ and CD19+ cells either did not increase or increased only slightly during exercise. Adrenaline and noradrenaline increased nearly linearly by 36% and 77% respectively at 10 min exercise. The increase of natural killer cells and heart rates between rest and 10 min of exercise correlated significantly (r = 0.576, P = 0.031). We conclude that natural killer cells, cytotoxic, non-MHC-restricted T-cells, monocytes and eosinophils are mobilized rapidly during the first minutes of endurance exercise. Both catecholamines and increased blood flow are likely to contribute this effect.  相似文献   

14.
15.
In six normal supine subjects epinephrine infusion produced a greater leukocytosis with smaller changes in heart rate and blood pressure than did norepinephrine or isoproterenol. Upright exercise in those subjects produced a greater leukocytosis than supine exercise at the same work load. To determine the lung's participation in these events, indium-labeled neutrophils (PMN) were given to four of the subjects. We found that 20-25% were retained in the first pass through the lung when compared with technetium-labeled erythrocytes. The number of labeled PMN in the lung gradually decreased and the number in the spleen and the liver increased. Exercise and catecholamine infusion caused an acceleration in the release of labeled cells from the lung, an increase in both labeled and unlabeled cells in the peripheral blood, and an increase in the number of labeled cells in the liver and spleen. This suggests that increased perfusion of low-flow areas in the lung may contribute to the increased leukocytosis seen in association with both exercise and catecholamine infusion.  相似文献   

16.
17.
Coronary blood flow is tightly coupled to myocardial oxygen consumption to maintain a consistently high level of myocardial oxygen extraction. This tight coupling has been proposed to depend on periarteriolar, oxygen tension, signals released from cardiomyocytes (adenosine acting on K ATP + channels), and/or the endothelium (prostanoids, nitric oxide, endothelin [ET]) and autonomic influences (catecholamines), but the contribution of each of these regulatory pathways and their interactions are still incompletely understood. Until recently, experimental studies into the regulation of coronary blood flow during exercise were principally performed in the dog. We have performed several studies on the regulation of vasomotor tone in coronary resistance vessels in chronically instrumented exercising swine. These studies have shown that the coronary resistance vessels in swine lack significant α-adrenergic control, but that these vessels are subject to β-adrenergic feed-forward control during exercise, which is aided by a parasympathetic withdrawal. In addition, withdrawal of an ET-mediated vasoconstrictor influence also contributes to exercise-induced coronary vasodilation. Coronary blood flow regulation by endothelial and metabolic vasodilator pathways contributes to resting vasomotor tone regulation but does not appear to contribute to the exercise-induced coronary vasodilation. Furthermore, blockade of one vasodilator pathway is not compensated by an increased contribution of the other vasodilator mechanisms, suggesting that porcine coronary vasomotor control by endothelial and metabolic factors occurs in a linear additive rather than a nonlinear synergistic fashion.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号