首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Significant reductions in greenhouse gas emissions from food production and consumption can be made at the level of individual diet. Together with the food and beverage sector, consumers could play a significant role by making informed choices that benefit the environment and their own health. Communicating information on carbon footprints to consumers is challenging and should be made very simple, yet reliable. This sector is showing interest in using eco-design tools to decrease climate change impacts of their meals.

Methods

A long-term concept for communicating information on carbon footprints associated with meals was developed in Finland. The criteria for a Climate Choice meal were created through stakeholder dialogue, and three restaurant operators piloted the concept in 25 restaurants. In addition to climate change impacts, possibilities to include other sustainability criteria were reviewed. The concept was based on simplified carbon footprinting of raw material production and processing of ingredients for 105 commonly selected lunches. The carbon footprint calculations allowed the development of the Climate Choice meal concept, its criteria, and piloting the concept. Based on experiences from restaurants and consumers from the pilot phase, final criteria were developed.

Results and discussion

The Climate Choice meal concept was created using two alternative climate criteria: one for immediate implementation and another for future implementation, in cases where carbon footprinting is feasible for restaurants. The criteria for immediate implementation include a list of mainly plant-based ingredients with low carbon footprint. Regarding future criteria, it should be made easy enough for restaurants to estimate the carbon footprints of their meals, allowing labeling of meals when their carbon footprints are at least 25 % smaller than for an average meal. In addition to the two climate criteria, Climate Choice meals need to follow Finnish public catering nutritional recommendations, taking into account that fish species on the Red List of WWF’s Finnish seafood guide are prohibited.

Conclusions

To promote climate-friendly eating, a long-term concept rather than a short-term campaign is needed. There is interest among consumers and restaurants for information on food carbon footprints and sustainability. Lunch is regarded as a good opportunity for consumers to learn about climate-friendly eating. The main challenges are to produce sufficiently reliable background data and to raise consumer and the food and beverage sector interest and understanding of carbon footprints associated with food.
  相似文献   

2.

Purpose

Earth faces an urgent need for climate change mitigation, and carbon storage is discussed as an option. Approaches for assessing the benefit of temporary carbon storage in relation to carbon footprinting exist, but many are based on a 100-year accounting period, disregarding impacts after this time. The aim of this paper is to assess the consequences of using such approaches that disregard the long timescale on which complete removal of atmospheric CO2 occurs. Based on these findings, an assessment is made on what are relevant timescales to consider when including the value of temporary carbon storage in carbon footprinting.

Methods

Implications of using a 100-year accounting period is evaluated via a literature review study of the global carbon cycle, as well as by analysing the crediting approaches that are exemplified by the PAS 2050 scheme for crediting temporary carbon storage.

Results and discussion

The global carbon cycle shows timescales of thousands of years for the transport of carbon from the atmosphere to pools beyond the near-surface layers of the Earth, from where it will not readily be re-emitted as a response to change in near-surface conditions. Compared to such timescales, the use of the 100-year accounting period appears hard to justify. We illustrate how the use of the 100-year accounting period can cause long-term global warming impacts to be hidden by short-term storage solutions that may not offer real long-term climate change mitigation. Obtaining long-term climatic benefits is considered to require storage of carbon for at least thousand years. However, it has been proposed that there may exist tipping points for the atmospheric CO2 concentration beyond which irreversible climate changes occur. To reduce the risk of passing such tipping points, fast mitigation of the rise in atmospheric greenhouse gas concentration is required and in this perspective, shorter storage times may still provide climatic benefits.

Conclusions

Both short- and long-term perspectives should be considered when crediting temporary carbon storage, addressing both acute effects on the climate and the long-term climate change. It is however essential to distinguish between short- and long-term mitigation potential by treating them separately and avoid that short-term mitigation is used to counterbalance long-term climate change impacts from burning of fossil fuels.  相似文献   

3.

Purpose

A greenhouse gas emissions analysis (carbon footprint) was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the USA. The goal was to determine the carbon footprint (grams CO2 equivalents (gCO2e)/kg of dry feed) in the USA on a regional basis, identify key inputs, and make recommendations for emissions reduction.

Methods

Commonly used dairy feeds in the USA, such as soybeans, alfalfa, corn, and others, were identified based on a recent literature review and information from dairy farm surveys. The following input data for the cultivation and harvesting of dairy feeds were collected for five US regions: crop production data, energy input, soil amendments, and crop protection chemicals. Life cycle inventory input data were mainly collected from the US Department of Agriculture National Agricultural Statistical Service on a state-by-state basis as well as from state extension services forage crop budget estimates. In addition to consulting other life cycle assessment studies and published articles and reports, this cradle-to-farm gate carbon footprint analysis was conducted using the Ecoinvent? unit processes in SimaPro version 7.1? (PRé Consultants 2009).

Results

The final carbon footprint results (gCO2e/kg of dry dairy feed) varied regionally depending on a number of factors such as lime and fertilizer application rates. The average national US carbon footprint results of the main feeds were: corn grain (390), corn silage (200), dried distillers grains with solubles (910 dry mill, 670 wet mill), oats (850), soybeans (390), soybean meal (410), winter wheat (430), alfalfa hay (170), and forage mix (160).

Conclusions and recommendations

The southeast dairy region generally showed a relatively high level of carbon footprint for most feeds, and this is attributable to the higher application rates of both synthetic fertilizers and lime. The highest contributor to carbon footprint for most regions (apart from soybeans and soybean meal) was due to the application of inorganic nitrogen fertilizer. Efficient transfer of knowledge to farmers with regards to fertilizer best management practices such as precision application of farm nutrients may contribute significantly to reducing regional crop carbon footprints.  相似文献   

4.

Background and aims

Investments in restoring native vegetation must increasingly allow for likely impacts of climate change, requiring re-evaluation of limits to ecological recovery and persistence. Nutrient enrichment and weed invasion are significant limits to restoration in mesic ecosystems, but in a drying climate, limits could shift towards more fundamental ecosystem functions. We used a state and transition framework to identify landuse-related changes in topsoil biophysical characteristics likely to influence climate resilience in mesic temperate eucalypt woodlands.

Methods

We compared topsoil condition in little-modified ‘reference’ states of the native ground-layer (dominated by tall tussock grasses) with four degraded ground-layer states identified in our state and transition framework. We hypothesized that ‘nutrient-depleted’ states (dominated by short tussock grasses) and ‘nutrient-enriched’ states (dominated by exotic annuals) would exhibit characteristics reflecting increased and decreased ecosystem vulnerability to a drying climate respectively.

Results

Our hypothesis that nutrient-depleted states are more vulnerable to a drying climate was supported by their significantly slower soil-water infiltration rates and significantly lower levels of topsoil carbon, clay, micro-invertebrates, microbial activity and modeled water holding capacity than reference states. However, degradation was less pronounced beneath trees, and our prediction regarding enriched states was supported only for carbon.

Conclusions

Topsoil biophysical characteristics associated with different ground-layer states are predictable using a state and transition framework. Climate resilience of nutrient-depleted states appears compromised by topsoil biophysical degradation, indicating increasing need for attention in mesic ecosystems predicted to become drier under climate change.  相似文献   

5.

Background

Violence against women (VAW) is a major public health problem. Translation of VAW research to policy and practice is an area that remains understudied, but provides the opportunity to examine knowledge translation and exchange (KTE) processes in a complex, multi-stakeholder context. In a series of studies including two randomized trials, the McMaster University VAW Research Program studied one key research gap: evidence about the effectiveness of screening women for exposure to intimate partner violence. This project developed and evaluated KTE strategies to share research findings with policymakers, health and community service providers, and women's advocates.

Methods

A longitudinal cross-sectional design, applying concurrent mixed data collection methods (surveys, interviews, and focus groups), was used to evaluate the utility of specific KTE strategies, including a series of workshops and a day-long Family Violence Knowledge Exchange Forum, on research sharing, uptake, and use.

Results

Participants valued the opportunity to meet with researchers, provide feedback on key messages, and make personal connections with other stakeholders. A number of factors specific to the knowledge itself, stakeholders' contexts, and the nature of the knowledge gap being addressed influenced the uptake, sharing, and use of the research. The types of knowledge use changed across time, and were specifically related to both the types of decisions being made, and to stage of decision making; most reported use was conceptual or symbolic, with few examples of instrumental use. Participants did report actively sharing the research findings with their own networks. Further examination of these second-order knowledge-sharing processes is required, including development of appropriate methods and measures for its assessment. Some participants reported that they would not use the research evidence in their decision making when it contradicted professional experiences, while others used it to support apparently contradictory positions. The online wiki-based 'community of interest' requested by participants was not used.

Conclusions

Mobilizing knowledge in the area of VAW practice and policy is complex and resource-intensive, and must acknowledge and respect the values of identified knowledge users, while balancing the objectivity of the research and researchers. This paper provides important lessons learned about these processes, including attending to the potential unintended consequences of knowledge sharing.  相似文献   

6.

Background

We propose a new quantitative measure that enables the researcher to make decisions and test hypotheses about the distribution of knowledge in a community and estimate the richness and sharing of information among informants. In our study, this measure has two levels of analysis: intracultural and intrafamily.

Methods

Using data collected in northeastern Brazil, we evaluated how these new estimators of richness and sharing behave for different categories of use.

Results

We observed trends in the distribution of the characteristics of informants. We were also able to evaluate how outliers interfere with these analyses and how other analyses may be conducted using these indices, such as determining the distance between the knowledge of a community and that of experts, as well as exhibiting the importance of these individuals' communal information of biological resources. One of the primary applications of these indices is to supply the researcher with an objective tool to evaluate the scope and behavior of the collected data.  相似文献   

7.

Background and aims

Soil microbial responses to global change can affect organic matter turnover and nutrient cycling thereby altering the overall ecosystem functioning. In a large-scale experiment, we investigated the impact of 5 years of climate change and elevated atmospheric CO2 on soil microorganisms and nutrient availability in a temperate heathland.

Methods

The future climate was simulated by increased soil temperature (+0.3 °C), extended pre-summer drought (excluding 5–8 % of the annual precipitation) and elevated CO2 (+130 ppm) in a factorial design. Soil organic matter and nutrient pools were analysed and linked to microbial measures by quantitative PCR of bacteria and fungi, chloroform fumigation extraction, and substrate-induced respiration to assess their impact of climate change on nutrient availability.

Results

Warming resulted in higher measures of fungi and bacteria, of microbial biomass and of microbial growth potential, however, this did not reduce the availability of nitrogen or phosphorus in the soil. Elevated CO2 did not directly affect the microbial measures or nutrient pools, whereas drought shifted the microbial community towards a higher fungal dominance.

Conclusions

Although we were not able to show strong interactive effects of the global change factors, warming and drought changed both nutrient availability and microbial community composition in the heathland soil, which could alter the ecosystem carbon and nutrient flow in the long-term.  相似文献   

8.

Purpose

Current estimations of the climate impact from indirect land use change (ILUC) caused by biofuels are heavily influenced by assumptions regarding the biofuel production period. The purpose of this paper is to propose a new method (baseline time accounting) that takes global land use dynamics into account that is consistent with the global warming potential, that is applicable to any phenomenon causing land use change, and that is independent of production period assumptions.

Methods

We consider ILUC in two forms. The first is called “accelerated expansion” and concerns ILUC in regions with an expanding agricultural area. The second is called “delayed reversion” and concerns ILUC in regions with a decreasing agricultural area. We use recent trends in international land use and projections of future land use change to assess how ILUC from biofuels will alter the development in global agricultural land use dynamics compared to the existing trend (i.e., the baseline development). We then use the definition of the global warming potential to determine the CO2 equivalence of the change in land use dynamics.

Results and discussion

We apply baseline time accounting to two existing ILUC studies in the literature. With current trends in global agricultural land use, the method significantly reduces the estimated climate impact in the previous ILUC studies (by more than half). Sensitivity analyses show that results are somewhat sensitive to assumptions regarding carbon sequestration and assumptions regarding postreversion ecosystems.

Conclusions

The global dynamic development in land use has important implications for the time accounting step when estimating the climate impact of ILUC caused by biofuel production or other issues affecting land use. Ignoring this may lead to erroneous conclusions about the actual climate impact of ILUC. Several land use projections indicate that the global agricultural area will keep expanding up to and beyond 2050. We therefore recommend to apply the baseline time accounting concept as an integrated part of future ILUC studies and to update the results on a regular basis.  相似文献   

9.
10.

Background

The implementation of new medical knowledge into general practice is a complex process. Blended learning may offer an effective and efficient educational intervention to reduce the knowledge-to-practice gap. The aim of this study was to compare knowledge acquisition about dementia management between a blended learning approach using online modules in addition to quality circles (QCs) and QCs alone.

Methods

In this cluster-randomised trial with QCs as clusters and general practitioners (GPs) as participants, 389 GPs from 26 QCs in the western part of Germany were invited to participate. Data on the GPs' knowledge were obtained at three points in time by means of a questionnaire survey. Primary outcome was the knowledge gain before and after the interventions. A subgroup analysis of the users of the online modules was performed.

Results

166 GPs were available for analysis and filled out a knowledge test at least two times. A significant increase of knowledge was found in both groups that indicated positive learning effects of both approaches. However, there was no significant difference between the groups. A subgroup analysis of the GPs who self-reported that they had actually used the online modules showed that they had a significant increase in their knowledge scores.

Conclusion

A blended learning approach was not superior to a QCs approach for improving knowledge about dementia management. However, a subgroup of GPs who were motivated to actually use the online modules had a gain in knowledge.

Trial registration

Current Controlled Trials ISRCTN36550981.  相似文献   

11.

Purpose

Production of feed is an important contributor to life cycle greenhouse gas emissions, or carbon footprints (CFPs), of livestock products. Consequences of methodological choices and data sensitivity on CFPs of feed ingredients were explored to improve comparison and interpretation of CFP studies. Methods and data for emissions from cultivation and processing, land use (LU), and land use change (LUC) were analyzed.

Method

For six ingredients (maize, wheat, palm kernel expeller, rapeseed meal, soybean meal, and beet pulp), CFPs resulting from a single change in methods and data were compared with a reference CFP, i.e., based on IPCC Tier 1 methods, and data from literature.

Results and discussion

Results show that using more detailed methods to compute N2O emissions from cultivation hardly affected reference CFPs, except for methods to determine $ \mathrm{NO}_3^{-} $ leaching (contributing to indirect N2O emissions) in which the influence is about ?7 to +12 %. Overall, CFPs appeared most sensitive to changes in crop yield and applied synthetic fertilizer N. The inclusion of LULUC emissions can change CFPs considerably, i.e., up to 877 %. The level of LUC emissions per feed ingredient highly depends on the method chosen, as well as on assumptions on area of LUC, C stock levels (mainly aboveground C and soil C), and amortization period.

Conclusions

We concluded that variability in methods and data can significantly affect CFPs of feed ingredients and hence CFPs of livestock products. Transparency in methods and data is therefore required. For harmonization, focus should be on methods to calculate $ \mathrm{NO}_3^{-} $ leaching and emissions from LULUC. It is important to consider LUC in CFP studies of food, feed, and bioenergy products.  相似文献   

12.

Background

For 15+ years, a beech (Fagus sylvatica L.) dominated forest on calcareous soil was studied on two opposing slopes with contrasting microclimate in Tuttlingen, Swabian Alb, Germany. The cool-humid NE aspect of these slopes represents the majority of beech forests under current climate, the warmer and drier SW aspect represents beech forests under future climate conditions. The field studies were supplemented by investigations under controlled conditions.

Scope

The research program aimed to provide a comprehensive understanding of plant-soil-microbe water, carbon and nitrogen feedbacks in a changing climate and a holistic view of the sensitivity of beech to climate change.

Conclusions

The results of comparative and experimental studies underpin the high vulnerability of adult beech and its natural regeneration on calcareous soil to both direct climate change effects on plant physiology and indirect effects mediated by soil biogeochemical cycles. Mechanisms contributing to this vulnerability at the ecosystem and organismic level indicate a high significance of competitive interactions of beech with other vegetation components and soil microbial communities. Obvious forest management practices such as selective felling did not necessarily counteract negative effects of climate change.
  相似文献   

13.

Purpose

Much tropical land requires rehabilitation but the capacity of reforestation with plantations or naturally regenerating secondary forests for overcoming soil degradation remains unclear. We hypothesised that desirable effects, including improved soil fertility and carbon sequestration, are achieved to a greater extent in Acacia mangium plantations and secondary forests than in Eucalyptus urophylla plantations.

Methods

We tested our hypothesis across soil and climate gradients in Vietnam with linear mixed-effect models and other, comparing A. mangium and E. urophylla plantations, secondary forests and pasture.

Results

A. mangium plantations and secondary forests showed a positive correlation between biomass production and desirable soils properties including increased soil carbon, nitrogen and phosphorus, and reduced bulk density. All plantations, but not secondary forests, caused increases in soil acidity. Eight-year old A. mangium plantations contained most carbon in biomass+soil, and secondary forests and pastures had similar or higher soil carbon. E. urophylla plantations had the lowest soil carbon status, raising doubt about their sequestration capacity in current 6–8 year rotations.

Conclusions

The study demonstrates that appropriate reforestation enhances soil fertility and promotes carbon sequestration on degraded tropical lands and that unmanaged secondary forests are effective at improving soil fertility and sequestering carbon at low cost.  相似文献   

14.

Key message

Clim ate is the main driver of Aleppo pine radial growth variability irrespective of site pro ductivity, with the climate effects on tree growth more limiting from 1970 onwards.

Abstract

Forest management adaptation to climate change requires identifying the previously most vulnerable stands and the possible climate impacts on forests. This study evaluates whether site index, as an indicator of forest productivity, is related to climate–growth responses and assesses the way in which local site factors modulate climate–tree growth relationships. Tree-ring width series and soil characteristics were obtained from six Pinus halepensis stands with different site indices and similar climate. Dendrochronological methods were used to compare tree climate–growth responses among sites and to study temporal trends in inter-annual growth variability and climate–growth relationships (before and after 1970). The influence of topographic and soil features on tree growth was assessed by means of partial least squares. Stands with low site indices tended to present higher mean sensitivities and greater percentages of missing rings, this relation being modulated mainly by clay percentage and nutrient status in soil. Climate is the major Aleppo pine radial growth driver in the study area with similar growth–climate relationship among sites. Radial growth was mainly influenced by spring temperature and precipitation and previous autumn–winter precipitation. This relationship was stronger after 1970 than before this year, showing also a 2-month advancement of the most influential climate variables after 1970, from May to March. These results and the increasing temporal trend found in mean sensitivity after 1970 highlight the vulnerability of these stands to climate change. Site index was not found to be directly related to stand vulnerability, although local site factors modulate in part the tree-growth response.  相似文献   

15.

Background and aims

Accurate predictions of nutrient acquisition by plant roots and mycorrhizas are critical in modelling plant responses to climate change.

Methods

We conducted a field experiment with the aim to investigate root nutrient uptake in a future climate and studied root production by ingrowth cores, mycorrhizal colonization, and fine root N and P uptake by root assay of Deschampsia flexuosa and Calluna vulgaris.

Results

Net root growth increased under elevated CO2, warming and drought, with additive effects among the factors. Arbuscular mycorrhizal colonization increased in response to elevated CO2, while ericoid mycorrhizal colonization was unchanged. The uptake of N and P was not increased proportionally with root growth after 5 years of treatment.

Conclusions

While aboveground biomass was unchanged, the root growth was increased under elevated CO2. The results suggest that plant production may be limited by N (but not P) when exposed to elevated CO2. The species-specific response to the treatments suggests different sensitivity to global change factors, which could result in changed plant competitive interactions and belowground nutrient pool sizes in response to future climate change.  相似文献   

16.

Purpose

The aim of this study is to assess the life cycle carbon footprint of the New Zealand kiwifruit packaging and transport supply chain to retailers in two major markets (Japan and Germany). Results of this study have been used to identify areas of the New Zealand kiwifruit packaging and transport supply chain that contribute significantly to the carbon footprint and to identify options for reduction.

Methods

This study is based on the ISO standards for life cycle assessment (namely, ISO 14040:2006 and ISO 14044:2006). The PAS 2050 also provided further methodological guidance. Primary packaging data were sourced from Zespri’s suppliers. End-of-life data were sourced from the market and waste statistics of the relevant countries. Gabi 4.4 was used for upstream material information and modelling.

Results and discussion

The carbon footprint of the packaging and transport of kiwifruit ranged from 0.33 to 0.67 kg CO2e per kilogram of fruit delivered to a store depending on pack type and market. Shipping accounted for the majority of these emissions (58–82 %), and Zespri is actively working with shipping companies to reduce this. There are also opportunities to reduce the carbon footprint through reducing the amount of fruit repacked in the market, using trains for long-distance transport and increasing packaging recycling rates.

Conclusions

There is a range of options for reducing the carbon footprint of the New Zealand kiwifruit packaging and transport supply chain. These will tend to be incremental (i.e. a number of small gains) and would involve working closely with partners in the supply chain. Options include increased efficiency in shipping, use of trains for land transport, reductions in the addition of structural packaging in the market, managing the product mix to minimize those supply chains with a higher carbon footprint, identifying alternative material for components of the packaging, replacing the use of polystyrene clamshells with alternative materials or plastic bags and maximizing recycling rates along all stages of the supply chain.  相似文献   

17.

Aims

Changes in temperature and precipitation are expected to influence ecosystem processes worldwide. Despite their globally large extent, few studies to date have examined the effects of climate change in desert ecosystems, where biological soil crusts are key nutrient cycling components. The goal of this work was to assess how increased temperature and frequency of summertime precipitation affect the contributions of crust organisms to soil processes.

Methods

With a combination of experimental 2°C warming and altered summer precipitation frequency applied over 2?years, we measured soil nutrient cycling and the structure and function of crust communities.

Results

We saw no change in crust cover, composition, or other measures of crust function in response to 2°C warming and no effects on any measure of soil chemistry. In contrast, crust cover and function responded to increased frequency of summer precipitation, shifting from moss to cyanobacteria-dominated crusts; however, in the short timeframe we measured, there was no accompanying change in soil chemistry. Total bacterial and fungal biomass was also reduced in watered plots, while the activity of two enzymes increased, indicating a functional change in the microbial community.

Conclusions

Taken together, our results highlight the limited effects of warming alone on biological soil crust communities and soil chemistry, but demonstrate the substantially larger effects of altered summertime precipitation.  相似文献   

18.

Background and aims

In cold biomes, litter decomposition, which controls the nutrient availability for plants and the ecosystem carbon budget, is strongly influenced by climatic conditions. In this study, focused on the early litter decay within snowbed habitats, the magnitude of the short- and long-term influences of climate warming, the direction of the effects of warmer temperature and advanced snowmelt, and the control of microclimatic features and plant traits were compared.

Methods

Combining experimental warming and space-for-time substitution, mass loss and nutrient release of different plant functional types were estimated in different climatic treatments with the litter bag method.

Results

Plant functional types produced a larger variation in the early-decomposition compared to that produced by climatic treatments. Litter decay was not affected by warmer summer temperatures and reduced by advanced snowmelt. Structural-related plant traits exerted the major control over litter decomposition.

Conclusions

Long-term effects of climate warming, resulting from shifts in litter quality due to changes in the abundance of plant functional types, will likely have a stronger impact on plant litter decomposition than short-term variations in microclimatic features. This weaker response of litter decay to short-term climate changes may be partially due to the opposite influences of higher summer temperatures and advanced snowmelt time.  相似文献   

19.

Background and Aims

For croplands, controversy persists concerning the adequacy of the soil use and the management of environmental problems such as soil erosion and fertility in a context of climate change. In this study, we used the RothC model to evaluate the capacity of carbon fixation by the soil in a Mediterranean olive grove for two different scenarios: the land-use change from native vegetation (NV) to conventional tillage (T) in the olive grove, and for the change in soil management from conventional tillage to cover crop (CC).

Methods

In three experimental olive groves in Andalusia (S Spain) two soil-management systems were sampled: T and CC. Areas of NV adjacent to the grove were also sampled as indicative of the initial state of the soil without olive trees. We measured the aboveground biomass production of the cover and the clay content, bulk density, and soil organic carbon (SOC) for 0–5, 5–15 and 15–30 cm depth.

Results

The removal of NV to implement T resulted in a significantly loss of SOC that depended mainly on the relief of the terrain. However, the use of CC increased the SOC because of greater inputs (above-and belowground plant inputs) to the soil. The final concentration at each location was related to the carbon inputs and the clay content. The CC resulted in carbon storage during the first year of 4.02?±?1.65 Mg C ha?1, and a total carbon fixation by the soil of 5.91?±?2.06 Mg C ha?1.

Conclusion

The use of cover crops in Mediterranean olive groves proved to be a suitable strategy to increase the carbon storage into the soil and then to decrease the CO2 concentration in the atmosphere.  相似文献   

20.

Aims

We examine how root system demography and morphology are affected by air warming and multiple, simultaneous climate change drivers.

Methods

Using minirhizotrons, we studied root growth, morphology, median longevity, risk of mortality and standing root pool in the upper soil horizon of a temperate grassland ecosystem for 3 years. Grassland monoliths were subjected to four climate treatments in a replicated additive design: control (C); elevated temperature (T); combined T and summer precipitation reduction (TD); combined TD and elevated atmospheric CO2 (TDCO2).

Results

Air warming (C vs T) and the combined climate change treatment (C vs TDCO2) had a positive effect on root growth rate and standing root pool. However, root responses to climate treatment varied depending on diameter size class. For fine roots (≤ 0.1 mm), new root length and mortality increased under warming but decreased in response to elevated CO2 (TD vs TDCO2); for coarse roots (> 0.2 mm), length and mortality increased under both elevated CO2 and combined climate change drivers.

Conclusions

Our data suggest that the standing roots pool in our grassland system may increase under future climatic conditions. Contrasted behaviour of fine and coarse roots may correspond to differential root activity of these extreme diameter classes in future climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号