首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this investigation was to relate the heart rate and lactate response during simulated cycling time trials to incremental laboratory tests. Subjects (N = 10) were tested for .V(O2)max (56.1 +/- 2.4 ml.kg(-1).min(-1) ) and lactate threshold during incremental tests to exhaustion. Power output and heart rate (HR) at threshold was assessed by 3 methods: lactate deflection point (LaT), onset of blood lactate accumulation (OBLA), and the point on the lactate curve at maximal distance from a line connecting starting and finishing power output (Dmax). Power output determined at these thresholds was 282.1 +/-4.2, 302.5 +/-1.3, and 296.0 +/- 1.8 W, respectively, whereas HR was determined to be 88.6 +/- 0.01, 92.2 +/- 0.01, and 91.0 +/- 0.01% of maximum, respectively. Power output and HR were significantly lower for LaT than for the other 2 methods (p < 0.05). On separate visits, cyclists were instructed to perform maximum efforts for 30 and 60 minutes (30TT and 60TT). Lactate, HR, perceived exertion (RPE), and metabolic variables were measured during the time trials. During the 30TT, participants sustained a significantly higher lactate level (5.29 +/- 0.3 vs. 3.43 +/- 0.3 mmol.L(-1), p < 0.001), percentage of maximum HR (%HRmax) (90.3 +/- 0.02 vs. 84.6 +/- 0.01, p = 0.009), and overall RPE (15.5 +/- 0.5 vs. 14.4 +/- 0.5, p = 0.009), than during the 60TT. .V(O2) was not significantly different between the time trials; however, .V(CO2) (p = 0.008), ventilation (p = 0.004), and respiratory exchange ratio (p = 0.02) were significantly higher during the 30TT. Correlations were found between HR at LaT (r = 0.78), OBLA (r = 0.78), and Dmax (r = 0.71) for the 60TT, but not for the 30TT. These data suggest that despite a large variability in blood lactate during time trial efforts of 30 and 60 minutes (from 1.8 to 10.8 mmol.L(-1)), HR was consistently 90% of maximum for the 30TT and 85% for the 60TT. HR during the 30TT was approximated by HR corresponding to OBLA and Dmax, whereas HR during 60TT was approximated by LaT.  相似文献   

2.
The exercise responses to two different progressive, upright cycle ergometer tests were studied in nine healthy, young subjects either with no drug (ND) or following 48 h or oral propranolol (P) (40 mg q.i.d.). The ergometer tests increased work rate by 30 W either every 30 s or every 4 min. Propranolol caused a significant (p less than 0.05) reduction in peak oxygen uptake (VO2) during both the 30-s and 4-min tests (30-s ND, 3949 +/- 718 mL X min-1 (means +/- SD); 30-s P, 3408 +/- 778 mL X min-1; 4-min ND, 4058 +/- 409 mL X min-1; 4-min P, 3725 +/- 573 mL X min-1). There was no difference between 30-s ND and 4-min ND for peak VO2. The ventilatory anaerobic threshold was not significantly different between any test (30-s ND, 2337 +/- 434 mL O2 X min-1; 30-s P, 2174 +/- 406 mL O2 X min-1; ND, 2433 +/- 685 mL O2 X min-1; 4-min P, 2296 +/- 604 mL O2 X min-1). The VO2 at which blood lactate had increased by 0.5 mM above resting levels was significantly lower than the ventilatory anaerobic threshold for the 4-min ND (1917 +/- 489) and the 4-min P (1978 +/- 412) tests, but was not different for the 30-s ND and 30-s P tests. At exhaustion in the progressive tests, the blood PCO2 was higher (p less than 0.05) in both 30-s tests than 4-min tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Dynamic activities such as running, cycling, and swimming have been shown to effectively reduce lactate in the postexercise period. It is unknown whether core stabilization exercises performed following an intense bout would exhibit a similar effect. Therefore, this study was designed to assess the extent of the lactate response with core stabilization exercises following high-intensity anaerobic exercise. Subjects (N = 12) reported twice for testing, and on both occasions baseline lactate was obtained after 5 minutes of seated rest. Subjects then performed a 30-second Wingate anaerobic cycle test, immediately followed by a blood lactate sample. In the 5-minute postexercise period, subjects either rested quietly or performed core stabilization exercises. A final blood lactate sample was obtained following the 5-minute intervention period. Analysis revealed a significant interaction (p = 0.05). Lactate values were similar at rest (core = 1.4 +/- 0.1, rest = 1.7 +/- 0.2 mmol x L(-1)) and immediately after exercise (core = 4.9 +/- 0.6, rest = 5.4 +/- 0.4 mmol x L(-1)). However, core stabilization exercises performed during the 5-minute postexercise period reduced lactate values when compared to rest (5.9 +/- 0.6 vs. 7.6 +/- 0.8 mmol x L(-1)). The results of this study show that performing core stabilization exercises during a recovery period significantly reduces lactate values. The reduction in lactate may be due to removal via increased blood flow or enhanced uptake into the core musculature. Incorporation of core stability exercises into a cool-down period following muscular work may result in benefits to both lactate clearance as well as enhanced postural control.  相似文献   

4.
The purpose of this study was to examine the accuracy of tests that may be used by distance runners to estimate the lactate threshold. Competitive distance runners/triathletes (N = 27) performed a criterion test that directly measured (blood lactate of 4.0 mmol.L(-1)) the lactate threshold. Subjects then performed 4 tests (VDOT, 3,200-m time trial, 30-minute time trial, Conconi) that estimate the threshold. Mean estimations of the running velocity at the lactate threshold from the 30-minute time trial (standard error of the estimate, SEE, 0.21 m.s(-1)) and VDOT (SEE 0.41 m.s(-1)) methods did not differ (P>0.05) from the criterion. In terms of heart rate, the 30-minute time trial estimation did not significantly differ (SEE 8.0 b.min(-1)) from criterion. These findings suggest that the 30-minute time-trial method should be considered by coaches and distance runners/triathletes as a method for estimating both the running velocity and heart rate at the lactate threshold.  相似文献   

5.
It has been proposed that field-based tests (FT) used to estimate functional threshold power (FTP) result in power output (PO) equivalent to PO at lactate threshold (LT). However, anecdotal evidence from regional cycling teams tested for LT in our laboratory suggested that PO at LT underestimated FTP. It was hypothesized that estimated FTP is not equivalent to PO at LT. The LT and estimated FTP were measured in 7 trained male competitive cyclists (VO2max = 65.3 ± 1.6 ml O2·kg(-1)·min(-1)). The FTP was estimated from an 8-minute FT and compared with PO at LT using 2 methods; LT(Δ1), a 1 mmol·L(-1) or greater rise in blood lactate in response to an increase in workload and LT(4.0), blood lactate of 4.0 mmol·L(-1). The estimated FTP was equivalent to PO at LT(4.0) and greater than PO at LT(Δ1). VO2max explained 93% of the variance in individual PO during the 8-minute FT. When the 8-minute FT PO was expressed relative to maximal PO from the VO2max test (individual exercise performance), VO2max explained 64% of the variance in individual exercise performance. The PO at LT was not related to 8-minute FT PO. In conclusion, FTP estimated from an 8-minute FT is equivalent to PO at LT if LT(4.0) is used but is not equivalent for all methods of LT determination including LT(Δ1).  相似文献   

6.
This study examined the effects of an external nasal dilator (END) on sedentary and aerobically trained women using the blood lactate threshold as a measure of aerobic performance. Three groups of women (sedentary, pre-season, in-season) participated in the study: nine sedentary college students (age 19 +/- 1.0 y), eight pre-season college athletes (age 20 +/- 2.3 y), and six in-season college rowers (age 20 +/- 1.7 y). A two-way repeated-measures design was used with subjects in each group being exposed to both conditions (with END and without END). The first two groups performed two incremental exercise tests in random order on a cycle ergometer, and the third group performed the tests on a rowing ergometer. Participants in each group wore an END strip for only one of the tests. Venous blood was collected at rest, during the final 30 seconds of each stage, and 1 and 3 minutes into the recovery period for the determination of blood lactate concentration and identification of the blood lactate threshold. No significant differences (P = 0.05) were found in blood lactate concentration at the lactate threshold between conditions for either group (sedentary: with END 2.51 +/- 1.18 mmol x L(-1), without END 2.56 +/- 0.84 mmol x L(-1); pre-season: with END 2.93 +/- 0.97 mmol x L(-1), without END 2.81 +/- 1.15 mmol x L(-1); and in-season: with END 3.93 +/- 0.50 mmol x L(-1), without END 3.49 +/- 0.387 mmol x L(-1)). We conclude that (a) the END did not improve the lactate threshold in either sedentary or trained college-age women, and (b) the END did not result in lower blood lactate levels during moderate to high-intensity exercise in the three groups examined in this study.  相似文献   

7.
The purposes of this study were to 1) compare the patterns of responses for plasma ammonia concentration ([NH3]) during moderate- vs. heavy-intensity cycle ergometry, and 2) examine the relationship between the V O2 slow component (V O 2SC) and plasma [NH3]. Thirteen healthy, untrained men (mean +/- SEM age = 24.8 +/- 0.6 years) performed a total of eight constant power output exercises (7 minutes in duration) at two different intensities (moderate, 60% gas exchange threshold [GET] = 60% of the gas exchange threshold; and heavy, Delta 50% = 50% of the difference between GET and V O2 max). Blood was collected from an antecubital vein before the exercise, during the last 3 minutes of the 6-minute warm-up, and during each minute of the 7-minute constant power output workbout. The time course of changes in plasma [NH3] and V O2 during the two constant power output exercise intensities were assessed separately using 2 (intensity) x 7 (time) repeated-measures analyses of variance. For 60% GET, there were no significant differences in the mean normalized plasma [NH3] during the 7-minute workbout. For Delta 50%, there was a significant increase in the mean normalized plasma [NH3] during the 7-minute workbout. These findings suggest a potential relationship between exercise-induced hyperammonemia and the V O 2SC during heavy-intensity exercise.  相似文献   

8.
A recent bout of high-intensity exercise can alter the balance of aerobic and anaerobic energy provision during subsequent exercise above the lactate threshold (theta(L)). However, it remains uncertain whether such "priming" influences the tolerable duration of subsequent exercise through changes in the parameters of aerobic function [e.g., theta(L), maximum oxygen uptake (Vo(2max))] and/or the hyperbolic power-duration (P-t) relationship [critical power (CP) and the curvature constant (W')]. We therefore studied six men performing cycle ergometry to the limit of tolerance; gas exchange was measured breath-by-breath and arterialized capillary blood [lactate] was measured at designated intervals. On different days, each subject completed 1) an incremental test (15 W/min) for estimation of theta(L) and measurement of the functional gain (DeltaVo(2)/DeltaWR) and Vo(2peak) and 2) four constant-load tests at different work rates (WR) for estimation of CP, W', and Vo(2max). All tests were subsequently repeated with a preceding 6-min supra-CP priming bout and an intervening 2-min 20-W recovery. The hyperbolicity of the P-t relationship was retained postpriming, with no significant difference in CP (241 +/- 39 vs. 242 +/- 36 W, post- vs. prepriming), Vo(2max) (3.97 +/- 0.34 vs. 3.93 +/- 0.38 l/min), DeltaVo(2)/DeltaWR (10.7 +/- 0.3 vs. 11.1 +/- 0.4 ml.min(-1).W(-1)), or the fundamental Vo(2) time constant (25.6 +/- 3.5 vs. 28.3 +/- 5.4 s). W' (10.61 +/- 2.07 vs. 16.13 +/- 2.33 kJ) and the tolerable duration of supra-CP exercise (-33 +/- 11%) were each significantly reduced, despite a less-prominent Vo(2) slow component. These results suggest that, following supra-CP priming, there is either a reduced depletable energy resource or a residual fatigue-metabolite level that leads to the tolerable limit before this resource is fully depleted.  相似文献   

9.
The purpose of this study was to investigate the acute effects of 3 types of stretching-static, dynamic, and proprioceptive neuromuscular facilitation (PNF)-on peak muscle power output in women. Concentric knee extension power was measured isokinetically at 60 degrees x s(-1) and 180 degrees x s(-1) in 12 healthy and recreationally active women (mean age +/- SD, 24 +/- 3.3 years). Testing occurred before and after each of 3 different stretching protocols and a control condition in which no stretching was performed. During 4 separate laboratory visits, each subject performed 5 minutes of stationary cycling at 50 W before performing the control condition, static stretching protocol, dynamic stretching protocol, or PNF protocol. Three submaximal warm-up trials preceded 3 maximal knee extensions at each testing velocity. A 2-minute rest was allowed between testing at each velocity. The results of the statistical analysis indicated that none of the stretching protocols caused a decrease in knee extension power. Dynamic stretching produced percentage increases (8.9% at 60 degrees x s(-1) and 6.3% at 180 degrees x s(-1)) in peak knee extension power at both testing velocities that were greater than changes in power after static and PNF stretching. The findings suggest that dynamic stretching may increase acute muscular power to a greater degree than static and PNF stretching. These findings may have important implications for athletes who participate in events that rely on a high level of muscular power.  相似文献   

10.
The main purposes of this study were to describe the cardiorespiratory fitness and lower limbs maximal muscle power of a selected group of Olympic Italian male (M) and female (F) judokas. Eleven subjects (6 M, 5 F) underwent 3 different tests. The VO(2)max and ventilatory threshold (VT; V-slope method) were assessed during a graded maximal treadmill test. Lower limbs muscle peak power (PP) and mean power (MP) were determined during a 30-second Wingate test (WIN). Post-WIN blood lactate peak was also measured. Subjects were tested also during a 5-minute combat test (CT), during which blood lactate and heart rate (HR) were monitored. VO(2)max (mean +/- SD) was 47.3 +/- 10.9 and 52.9 +/- 4.4 ml x kg(-1) x min(-1) for M and F judokas, respectively. The VT corresponded to 80.8% (M) and 86.5% (F) of VO(2)max. Both PP and MP, measured during the WIN, were significantly higher (p < 0.05) in M than in F judokas (PP: 12.1 +/- 2.4 vs. 9.5 +/- 1.1 W x kg(-1); MP: 5.4 +/- 1.1 W x kg(-1); F: 4.3 +/- 0.5 W x kg(-1)). Post WIN blood lactate peak was 6.9 +/- 2.8 mmol x l(-1) and 6.1 +/- 1.8 mmol x l(-1) for M and F judokas, respectively (not significant). During the CT blood lactate peak was 9.9 +/- 3.0 mmol x l(-1) (M) and 9.2 +/- 2.0 mmol x l(-1) (F); these values being significantly higher than those obtained after the WIN (p < 0.05). In conclusion, Italian Olympic judokas showed high levels of muscle power but accompanied by a moderate engagement of the aerobic metabolic pathway, which is well in accordance with the characteristics of judo. Having these results in top-level athletes may represent a useful contribution to the work of coaches and trainers in optimizing training programs for the achievement of the best performance of the judoka.  相似文献   

11.
The aim of the present study was to determine the effect of carbohydrate (CHO; sucrose) ingestion and environmental heat on the development of fatigue and the distribution of power output during a 16.1-km cycling time trial. Ten male cyclists (Vo(2max) = 61.7 +/- 5.0 ml.kg(-1).min(-1), mean +/- SD) performed four 90-min constant-pace cycling trials at 80% of second ventilatory threshold (220 +/- 12 W). Trials were conducted in temperate (18.1 +/- 0.4 degrees C) or hot (32.2 +/- 0.7 degrees C) conditions during which subjects ingested either CHO (0.96 g.kg(-1).h(-1)) or placebo (PLA) gels. All trials were followed by a 16.1-km time trial. Before and immediately after exercise, percent muscle activation was determined using superimposed electrical stimulation. Power output, integrated electromyography (iEMG) of vastus lateralis, rectal temperature, and skin temperature were recorded throughout the trial. Percent muscle activation significantly declined during the CHO and PLA trials in hot (6.0 and 6.9%, respectively) but not temperate conditions (1.9 and 2.2%, respectively). The decline in power output during the first 6 km was significantly greater during exercise in the heat. iEMG correlated significantly with power output during the CHO trials in hot and temperate conditions (r = 0.93 and 0.73; P < 0.05) but not during either PLA trial. In conclusion, cyclists tended to self-select an aggressive pacing strategy (initial high intensity) in the heat.  相似文献   

12.
Active muscle and whole body lactate kinetics after endurance training in men.   总被引:10,自引:0,他引:10  
We evaluated the hypotheses that endurance training decreases arterial lactate concentration ([lactate](a)) during continuous exercise by decreasing net lactate release () and appearance rates (R(a)) and increasing metabolic clearance rate (MCR). Measurements were made at two intensities before [45 and 65% peak O(2) consumption (VO(2 peak))] and after training [65% pretraining VO(2 peak), same absolute workload (ABT), and 65% posttraining VO(2 peak), same relative intensity (RLT)]. Nine men (27.4 +/- 2.0 yr) trained for 9 wk on a cycle ergometer, 5 times/wk at 75% VO(2 peak). Compared with the 65% VO(2 peak) pretraining condition (4.75 +/- 0.4 mM), [lactate](a) decreased at ABT (41%) and RLT (21%) (P < 0.05). decreased at ABT but not at RLT. Leg lactate uptake and oxidation were unchanged at ABT but increased at RLT. MCR was unchanged at ABT but increased at RLT. We conclude that 1) active skeletal muscle is not solely responsible for elevated [lactate](a); and 2) training increases leg lactate clearance, decreases whole body and leg lactate production at a given moderate-intensity power output, and increases both whole body and leg lactate clearance at a high relative power output.  相似文献   

13.
We studied glucose oxidation (Glu(ox)) and glycogen degradation during 140 min of constant-load [steady-state (SS)] and variable-intensity (VI) cycling of the same average power output, immediately followed by a 20-km performance ride [time trial (TT)]. Six trained cyclists each performed four trials: two experimental bouts (SS and VI) in which muscle biopsies were taken before and after 140 min of exercise for determination of glycogen and periodic acid-Schiff's staining; and two similar trials without biopsies but incorporating the TT. During two of the experimental rides, subjects ingested a 5 g/100 ml [U-(14)C]glucose solution to determine rates of Glu(ox). Values were similar between SS and VI trials: O(2) consumption (3.08 +/- 0.02 vs. 3.15 +/- 0.03 l/min), energy expenditure (901 +/- 40 vs. 904 +/- 58 J x kg(-1) x min(-1)), heart rate (156 +/- 1 vs. 160 +/- 1 beats/min), and rating of perceived exertion (12.6 +/- 0.6 vs. 12.7 +/- 0.7). However, the area under the curve for plasma lactate concentration vs. time was significantly greater during VI than SS (29.1 +/- 3.9 vs. 24.6 +/- 3. 7 mM/140 min; P = 0.03). VI resulted in a 49% reduction in total muscle glycogen utilization vs. 65% for SS, while total Glu(ox) was higher (99.2 +/- 5.3 vs. 83.9 +/- 5.2 g/140 min; P < 0.05). The number of glycogen-depleted type I muscle fibers at the end of 140 min was 98% after SS but only 59% after VI. Conversely, the number of type II fibers that showed reduced periodic acid-Schiff's staining was 1% after SS vs. 10% after VI. Despite these metabolic differences, subsequent TT performance was similar (29.14 +/- 0.9 vs. 30.5 +/- 0.9 min for SS vs. VI). These results indicate that whole body metabolic and cardiovascular responses to 140 min of either SS or VI exercise at the same average intensity are similar, despite differences in skeletal muscle carbohydrate metabolism and recruitment.  相似文献   

14.
The effect of hypoxia on the response to interval exercise was determined in eight elite female cyclists during two interval sessions: a sustained 3 x 10-min endurance set (5-min recovery) and a repeat sprint session comprising three sets of 6 x 15-s sprints (work-to-relief ratios were 1:3, 1:2, and 1:1 for the 1st, 2nd, and 3rd sets, respectively, with 3 min between each set). During exercise, cyclists selected their maximum power output and breathed either atmospheric air (normoxia, 20.93% O(2)) or a hypoxic gas mix (hypoxia, 17.42% O(2)). Power output was lower in hypoxia vs. normoxia throughout the endurance set (244+/-18 vs. 226+/-17, 234+/-18 vs. 221+/-25, and 235+/-18 vs. 221+/-25 W for 1st, 2nd, and 3rd sets, respectively; P< 0.05) but was lower only in the latter stages of the second and third sets of the sprints (452+/-56 vs. 429+/-49 and 403+/-54 vs. 373+/- 43 W, respectively; P<0.05). Hypoxia lowered blood O(2) saturation during the endurance set (92.9+/-2.9 vs. 95.4+/-1.5%; P<0.05) but not during repeat sprints. We conclude that, when elite cyclists select their maximum exercise intensity, both sustained (10 min) and short-term (15 s) power are impaired during hypoxia, which simulated moderate ( approximately 2,100 m) altitude.  相似文献   

15.
The beneficial role of carbohydrate (CHO) supplementation in endurance exercise is well documented. However, only few data are available on the effects of CHO loading on resistance exercise performance. Because of the repetitive use of high-threshold motor units, it was hypothesized that the power output (power-endurance) of multiple sets of jump squats would be enhanced following a high-CHO (6.5 g CHO kg body mass(-1)) diet compared to a moderate-CHO (4.4 g CHO kg body mass(-1)) diet. Eight healthy men (mean +/- SD: age 26.3 +/- 2.6 years; weight 73.0 +/- 6.3 kg; body fat 13.4 +/- 5.0%; height 178.2 +/- 6.1 cm) participated in 2 randomly assigned counterbalanced supplementation periods of 4 days after having their free-living habitual diet monitored. The resistance exercise test consisted of 4 sets of 12 repetitions of maximal-effort jump squats using a Plyometric Power System unit and a load of 30% of 1 repetition maximum (1RM). A 2-minute rest period was used between sets. Immediately before and after the exercise test, a blood sample was obtained to determine the serum glucose and blood lactate concentrations. No significant difference in power performance existed between the 2 diets. As expected, there was a significant (p 相似文献   

16.
Although a considerable amount of research is available describing the physiological characteristics of competitive young-adult cyclists, research describing these same characteristics in Masters-level cyclists is rare. Therefore, the purpose of this study was to describe and compare the effect of aging on physiological fitness parameters of Masters-level cyclists in an attempt to provide normative fitness data. Thirty-two male cyclists (35-73 years) completed one 15-minute economy test and one graded exercise test (GXT) on a cycle ergometer. During the GXT, maximal oxygen uptake ([latin capital V with dot above]o2max), maximal heart rate (HRmax), the first (VT1) and second (VT2) ventilatory thresholds, and peak power output (PPO) were recorded. For the purpose of analysis, subjects were allocated into three age groups (35-45 years, 45-54 years, >=55 years). Maximal oxygen uptake and absolute PPO were significantly lower among subjects 55 years and older (45.9 +/- 4.6 mL x kg(-1) x min(-1) and 324 +/- 51 W, respectively) compared with the 45- to 54-year group (54.2 +/- 6.6 mL x kg(-1) x min(-1) and 392 +/- 36 W, respectively), and both were significantly less compared with the 35- to 44-year group (60.7 +/- 5.1 mL x kg(-1) x min(-1) and 434 +/- 32 W, respectively). Maximal heart rate was significantly greater in both the 35- to 44-year and 45- to 54-year age groups compared with the >=55-year group. The first ventilatory threshold was significantly greater in the subjects who were 55 years and older group compared with the 35- to 44-year and 45- to 54-year age groups, and VT2 was significantly greater in subjects 55 years and older compared with the 35- to 44-year group. Economy was not different amongst groups. In conclusion, increases in age resulted in a significant reduction in fitness parameters across age groups. The comparison of the fitness characteristics of Masters-level cyclists with established young-adult cyclist data should be avoided, because this may lead to inaccurate assessments of fitness.  相似文献   

17.
The purpose of the present study was to examine the influence of 3 different high-intensity interval training regimens on the first and second ventilatory thresholds (VT(1) and VT(2)), anaerobic capacity (ANC), and plasma volume (PV) in well-trained endurance cyclists. Before and after 2 and 4 weeks of training, 38 well-trained cyclists (Vo(2)peak = 64.5 +/- 5.2 ml.kg(-1).min(-1)) performed (a) a progressive cycle test to measure Vo(2)peak, peak power output (PPO), VT(1), and VT(2); (b) a time to exhaustion test (T(max)) at their Vo(2)peak power output (P(max)); and (c) a 40-km time-trial (TT(40)). Subjects were assigned to 1 of 4 training groups (group 1: n = 8, 8 x 60% T(max) at P(max), 1:2 work-recovery ratio; group 2: n = 9, 8 x 60% T(max) at P(max), recovery at 65% maximum heart rate; group 3: n = 10, 12 x 30 seconds at 175% PPO, 4.5-minute recovery; control group: n = 11). The TT(40) performance, Vo(2)peak, VT(1), VT(2), and ANC were all significantly increased in groups 1, 2, and 3 (p < 0.05) but not in the control group. However, PV did not change in response to the 4-week training program. Changes in TT(40) performance were modestly related to the changes in Vo(2)peak, VT(1), VT(2), and ANC (r = 0.41, 0.34, 0.42, and 0.40, respectively; all p < 0.05). In conclusion, the improvements in TT(40) performance were related to significant increases in Vo(2)peak, VT(1), VT(2), and ANC but were not accompanied by significant changes in PV. Thus, peripheral adaptations rather than central adaptations are likely responsible for the improved performances witnessed in well-trained endurance athletes following various forms of high-intensity interval training programs.  相似文献   

18.
To investigate the relationships between race performance and parameters at the optimal power output for lactate removal, 10 male triathletes were examined. Exercise intensities for lactate removal were defined by calculating 50% of difference (DeltaT) between running velocity (V(r)) at individual anaerobic threshold (IAT) and at individual ventilatory threshold (IVT), then choosing 3 V(r): at IVT plus 50% DeltaT (IVT(+50%DeltaT)), at IVT, and at IVT minus 50% DeltaT (IVT(-50%DeltaT)). After a 6-minute treadmill run at 75% of difference between IAT and V(.-)O2max, all triathletes performed a 30-minute active recovery run at IVT(+50%DeltaT), IVT, and IVT(-50%DeltaT). Capillary blood lactate was determined at 1, 3, 6, 9, 12, 15, 20, 25, and 30 minutes of recovery. The IVT(-50%DeltaT) recovery was the most efficient V(r) for lactate removal. Running velocities at IVT and IVT(-50%DeltaT) were highly (p < 0.01) related to cycle, run, and overall race time. V(.-)O2max values at IAT, IVT(+50%DeltaT), and IVT were less (p < 0.05) related to split and overall race time. The variable most related to overall race time, as determined by stepwise multiple linear regression analysis, was the V(r) at IVT(-50%DeltaT) (r = 0.87, p = 0.001). The R(2) value of 0.76 indicated that V(r) at IVT(-50%DeltaT) could account for 76% of the variance in triathlon race time. This study shows that the race performances of triathletes are highly related to the V(r) at which the most efficient lactate removal (IVT(-50%DeltaT)) occurs. These findings suggest that the assessment of V(r) at IVT and IAT (from which V(r) at IVT(-50%DeltaT) are calculated) may be a useful method for monitoring training-induced adaptations and performance improvements in athletes who participate in Olympic triathlons.  相似文献   

19.
The purpose of this study was 3-fold: (a) to determine if the mathematical model used to estimate the electromyographic fatigue threshold (EMGFT) and physical working capacity at the heart rate threshold (PWCHRT) could be applied to VO2 measurements, (b) to propose a new fatigue threshold called the physical working capacity at the oxygen consumption threshold (PWCVO2), and (c) to compare the power output at the PWCVO2 to those of the EMGFT, PWCHRT, and ventilatory threshold (VT). Fifteen adult volunteers (mean age +/- SD = 22 +/- 2 years) performed a maximal cycle ergometer test to determine VO2peak and VT as well as 4 8-minute submaximal work bouts for the determination of PWCHRT, EMGFT, and PWCVO2. A 1-way repeated measures analysis of variance (ANOVA) with Tukey post hoc comparison indicated that PWCHRT (84 +/- 36) was significantly (p < 0.05) less than EMGFT (126 +/- 51), but there were no differences for PWCVO2 (111 +/- 44) and VT (111 +/- 60) versus PWCHRT or EMGFT. The results of this study indicated that (a) the mathematical model used to determine the PWCHRT and EMGFT was applicable to the measurement of VO2 and could be used to estimate the PWCVO2 during cycle ergometry, (b) there was a difference in the mean power outputs that corresponded to the fatigue thresholds determined from EMG and heart rate measurements, and (c) the PWCVO2 test may provide a useful submaximal technique for estimating the VT.  相似文献   

20.
The tolerable duration of high-intensity, constant-load cycle ergometry is a hyperbolic function of power, with an asymptote termed critical power (CP) and a curvature constant (W') with units of work. It has been suggested that continued exercise after exhaustion may only be performed below CP, where predominantly aerobic energy transfer can occur and W' can be partially replenished. To test this hypothesis, six volunteers each performed cycle-ergometer exercise with breath-by-breath determination of ventilatory and pulmonary gas exchange variables. Initially, four exercise tests to exhaustion were made: 1). a ramp-incremental and 2). three high-intensity constant-load bouts at different work rates, to estimate lactate (theta(L)) and CP thresholds, W', and maximum oxygen uptake (Vo2 max). Subsequently, subjects cycled to the limit of tolerance (for approximately 360 s) on three occasions, each followed by a work rate reduction to 1). 110% CP, 2). 90% CP, and 3). 80% theta(L) for a 20-min target. W' averaged 20.9 +/- 2.35 kJ or 246 +/- 30 J/kg. After initial fatigue, 110% CP was tolerated for only 30 +/- 12 s. Each subject completed 20 min at 80% theta(L), but only two sustained 20 min at 90% CP; the remaining four subjects fatigued at 577 +/- 306 s, with oxygen consumption at 89 +/- 8% Vo2 max. The results support the suggestion that replenishing W' after fatigue necessitates a sub-CP work rate. The variation in subjects' responses during 90% CP was unexpected but consistent with mechanisms such as reduced CP consequent to prior high-intensity exercise, variation in lactate handling, and/or regional depletion of energy substrates, e.g., muscle glycogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号