首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Lithocholic acid (LCA), a secondary bile acid, is a vitamin D receptor (VDR) ligand. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the hormonal form of vitamin D, is involved in the anti-inflammatory action through VDR. Therefore, we hypothesize that LCA acts like 1,25(OH)(2)D(3) to drive anti-inflammatory signals. In present study, we used human colonic cancer cells to assess the role of LCA in regulation of the pro-inflammatory NF-kappaB pathway. We found that LCA treatment increased VDR levels, mimicking the effect of 1,25(OH)(2)D(3). LCA pretreatment inhibited the IL-1beta-induced IkappaBalpha degradation and decreased the NF-kappaB p65 phosphorylation. We also measured the production of IL-8, a well-known NF-kappaB target gene, as a read-out of the biological effect of LCA expression on NF-kappaB pathway. LCA significantly decreased IL-8 secretion induced by IL-1beta. These LCA-induced effects were very similar to those of 1,25(OH)(2)D(3.) Thus, LCA recapitulated the effects of 1,25(OH)(2)D(3) on IL-1beta stimulated cells. Mouse embryonic fibroblast (MEF) cells lacking VDR have intrinsically high NF-kappaB activity. LCA pretreatment was not able to prevent TNFalpha-induced IkappaBalpha degradation in MEF VDR (-/-), whereas LCA stabilized IkappaBalpha in MEF VDR (+/-) cells. Collectively, our data indicated that LCA activated the VDR to block inflammatory signals in colon cells.  相似文献   

3.
1,25-dihydroxyvitamin D plays an important role in the regulation of osteoblast gene expression, regulating the expression of bone matrix proteins as well as that of Runx2, a key regulator of osteoblast differentiation. Studies in mice lacking the vitamin D receptor (VDR) have revealed that the actions of the VDR on the skeleton are not required in the setting of normal mineral ion homeostasis. Since paracrine and endocrine factors can compensate for gene defects in vivo, studies were performed to determine whether ablation of the VDR alters the program of osteoblast differentiation in vitro. Studies in primary calvarial cultures revealed that ablation of the VDR enhanced osteoblast differentiation. The cells from the VDR null mice exhibited an earlier onset and increased magnitude of alkaline phosphatase activity, as well as an earlier and sustained increase in mineralized matrix formation, demonstrating that this enhancement persists throughout the program of osteoblast differentiation. The expression of bone sialoprotein, which enhances mineralization, was also increased in the VDR null cultures. To determine whether the increase in osteoblast differentiation was associated with an increase in the number of osteogenic progenitors, the number of osteoblastic colony forming units (CFU-OB) was evaluated. There was a twofold increase in the number of CFU-OB in the cultures isolated from the VDR null mice. Furthermore, the VDR null CFU-OB demonstrated an earlier onset and higher magnitude of expression of alkaline phosphatase activity when compared to the CFU-OB from their wild-type control littermates. These studies demonstrate that the VDR attenuates osteoblast differentiation in vitro and suggest that other endocrine and paracrine factors modulate the effect of the VDR on osteoblast differentiation in vivo.  相似文献   

4.
If both rapid and genomic pathways may co-exist in the same cell, the involvement of the nuclear vitamin D receptor (VDR) in the rapid effects of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) remains unclear. We therefore studied rapid and long term effects of 1,25-(OH)(2)D(3) in cultured skin fibroblasts from three patients with severe vitamin D-resistant rickets and one age-matched control. Patients bear homozygous missense VDR mutations that abolished either VDR binding to DNA (patient 1, mutation K45E) or its stable ligand binding (patients 2 and 3, mutation W286R). In patient 1 cells, 1,25-(OH)(2)D(3) (1 pm-10 nm) had no effect on either intracellular calcium or 24-hydroxylase (enzyme activity and mRNA expression). In contrast, cells bearing the W286R mutation had calcium responses to 1,25-(OH)(2)D(3) (profile and magnitude) and 24-hydroxylase responses to low (1 pm-100 pm) 1,25-(OH)(2)D(3) concentrations (activity, CYP24, and ferredoxin mRNAs) similar to those of controls. The blocker of Ca(2+) channels, verapamil, impeded both rapid (calcium) and long term (24-hydroxylase activity, CYP24, and ferredoxin mRNAs) responses in patient and control fibroblasts. The MEK 1/2 kinase inhibitor PD98059 also blocked the CYP24 mRNA response. Taken together, these results suggest that 1,25-(OH)(2)D(3) rapid effects require the presence of VDR and control, in part, the first step of 1,25-(OH)(2)D(3) catabolism via increased mRNA expression of the CYP24 and ferredoxin genes in the 24-hydroxylase complex.  相似文献   

5.
The function of vitamin D receptor in vitamin D action   总被引:5,自引:0,他引:5  
  相似文献   

6.
7.
Skin is in the site of previtamin D3 and vitamin D3 synthesis and their isomerization in response to ultraviolet irradiation. At present, little is known about the function of the photoisomers of previtamin D3 and the vitamin D3 in skin cells. In this study we investigated the antiproliferative activity of the major photoisomers and their metabolites in the cultured human keratinocytes by determining their influence on 3H-thymidine incorporation into DNA. Our results demonstrated at both 10(-8) and 10(-6) M in a dose-dependent manner. Lumisterol, tachysterol3, 5,6-trans-vitamin D3, and 25-hydroxy-5,6-trans-vitamin D3 only induced significant inhibition at 10(-6) M. 25-Hydroxytachysterol3 was approximately 10- to 100-fold more active than tachysterol3. 7-Dehydrocholesterol was not active even at 10(-6) M. The dissociation constants of vitamin D receptor (VDR) for 25-hydroxytachysterol3, 25-hydroxy-5,6-trans-vitamin D3, and 5,6-trans-vitamin D3 were 22, 58, and 560 nM, respectively. The dissociation constants for 7-dehydrocholesterol, tachysterol, and lumisterol were greater than 20 microM. In conclusion, vitamin D3, its photoisomers and the photoisomers of previtamin D3 have antiproliferative activity in cultured human keratinocytes. However, the antiproliferative activity did not correlate with their binding affinity for VDR. The results suggest that some of the photoproducts may be metabolized to their 25-hydroxylated and 1 alpha,25-dihydroxylated counterparts before acting on VDR. Alternatively, a different receptor may recognize these photoproducts or another mechanism may be involved in modulating the antiproliferative activity of the photoisomers examined.  相似文献   

8.
The vitamin D(3) receptor (VDR) serves as a negative growth regulator during mammary gland development via suppression of branching morphogenesis during puberty and modulation of differentiation and apoptosis during pregnancy, lactation and involution. To assess the role of the VDR in the aging mammary gland, we utilized 12, 14, and 16 month old VDR knockout (KO) and wild type (WT) mice for assessment of integrity of the epithelial and stromal compartments, steroid hormone levels and signaling pathways. Our data indicate that VDR ablation is associated with ductal ectasia of the primary mammary ducts, loss of secondary and tertiary ductal branches and atrophy of the mammary fat pad. In association with loss of the white adipose tissue compartment, smooth muscle actin staining is increased in glands from VDR KO mice, suggesting a change in the stromal microenviroment. Activation of caspase-3 and increased Bax expression in mammary tissue of VDR KO mice suggests that enhanced apoptosis may contribute to loss of ductal branching. These morphological changes in the glands of VDR KO mice are associated with ovarian failure and reduced serum 17β-estradiol. VDR KO mice also exhibit progressive loss of adipose tissue stores, hypoleptinemia and increased metabolic rate with age. These developmental studies indicate that, under normocalcemic conditions, loss of VDR signaling is associated with age-related estrogen deficiency, disruption of epithelial ductal branching, abnormal energy expenditure and atrophy of the mammary adipose compartment.  相似文献   

9.
10.
In order to determine the distribution and function of the 5-HT5A serotonin receptor subtype, we generated knockout mice lacking the 5-HT5A gene. Comparative autoradiography studies of brains of wild-type (wt) and 5-HT5A knockout (5A-KO) mice revealed the existence of binding sites with high affinity for [125I]LSD that correspond to 5-HT5A receptors and that are concentrated in the olfactory bulb, neocortex, and medial habenula. When exposed to novel environments, the 5A-KO mice displayed increased exploratory activity but no change in anxiety-related behaviors. In addition, the stimulatory effect of LSD on exploratory activity was attenuated in 5A-KO mice. These results suggest that 5-HT5A receptors modulate the activity of neural circuits involved specifically in exploratory behavior and suggest that some of the psychotropic effects of LSD may be mediated by 5-HT5A receptors.  相似文献   

11.
In experimental glomerulonephritis, inhibition of renal prostaglandin (PG) synthesis by nonsteroidal-anti-inflammatory drugs (NSAIDs) moderates proteinuria, yet can induce harmful effects on renal blood flow and Na+ - K+ - water balance thereby implicating 1 or more prostanoid receptor subtypes. We investigated the role of the PGE2 EP1 receptor in nephritis since it is expressed in the glomerulus, collecting duct and vasculature in which its activity might contribute to adaptive or maladaptive responses. Accordingly, a mouse model of accelerated antiglomerular basement membrane (anti-GBM) nephrotoxic serum (NTS) nephritis was induced in mice with targeted-deletion of the EP1 receptor (EP1-/-). Proteinuria was similar between wild-type (wt) and EP1-/- NTS groups, thus negating a role for this subtype in modulating the glomerular permeability barrier in this model of anti-GBM NTS. However, overall renal damage was more acute in NTS EP1-/- mice, as evidenced by the degree of glomerular mesangial matrix expansion and the frequency of tubular dilatations. These changes in renal pathology were accompanied by stronger impairment of renal function in NTS EP1-/- mice, such that levels of serum creatinine, urea, Na+, and K+ were each significantly higher than those observed in NTS wt mice. Lastly, compared with wt mice, induction of NTS more severely reduced urine osmolality and body mass in EP1-/- mice. Taken together, the increased renal impairment seen in NTS EP1-/- mice suggests that the EP1 subtype plays a compensatory role in the context of acute nephritis.  相似文献   

12.
13.
Yamada S  Yamamoto K  Masuno H  Choi M 《Steroids》2001,66(3-5):177-187
On the basis of conformational analysis of the vitamin D side chain and studies using conformationally restricted synthetic vitamin D analogs, we have suggested the active space region concept of vitamin D: The vitamin D side-chain region was grouped into four regions (A, G, EA and EG) and the A and EA regions were suggested to be important for vitamin D actions. We extended our theory to known highly potent vitamin D analogs and found a new region F. The analogs which occupy the F region have such modifications as 22-oxa, 22-ene, 16-ene and 18-nor. Altogether, the following relationship between the space region and activity was found: Affinity for vitamin D receptor (VDR), EA > A> F > G > EG; Affinity for vitamin D binding protein (DBP), A > G,EA,EG; Target gene transactivation, EA > F > A > EG > or = G; Cell differentiation, EA > F > A > EG > or = G; Bone calcium mobilization, EA > GA > F > or = EG; Intestinal calcium absorption, EA = A > or = G > EG. We modeled the 3D structure of VDR-LBD (ligand binding domain) using hRARgamma as a template, to develop our structure-function theory into a theory involving VDR. 1alpha,25(OH)(2)D(3) was docked into the ligand binding pocket of the VDR with the side chain heading the wide cavity at the H-11 site, the A-ring toward the narrow beta-turn site, and the beta-face of the CD ring facing H3. Amino acid residues forming hydrogen bonds with the 1alpha- and 25-OH groups were specified: S237 and R274 forming a pincer type hydrogen-bond for the 1alpha-OH and H397 for the 25-OH. Mutants of several amino acid residues that are hydrogen-bond candidates were prepared and their biologic properties were evaluated. All of our mutation results together with known mutation data support our VDR model docked with the natural ligand.  相似文献   

14.
A Gebhardt  J C Bell    J G Foulkes 《The EMBO journal》1986,5(9):2191-2195
Cells transformed by the v-abl-oncogene produce large amounts of the tumour growth factor alpha TGF. alpha TGF is homologous to the epidermal growth factor (EGF) and stimulates cell growth via the EGF receptor pathway. To separate metabolic events in the v-abl-transformed cells mediated by alpha TGF as opposed to the v-abl-encoded protein-tyrosine kinase, we have employed the Swiss 3T3 variant cell line NR6 which lacks a functional EGF receptor. v-abl was found to transform efficiently NR6 cells in vitro. These transformed NR6 cells displayed a variety of in vitro properties which were indistinguishable from transformed wild-type fibroblast lines. However, in contrast to the wild-type lines, v-abl-transformed NR6 cells failed to form tumours when injected into athymic nude mice. These results imply an important function for alpha TGF and the EGF receptor in the establishment of the v-abl-induced fibrosarcomas.  相似文献   

15.
The regulation of renal mitochondrial 1-hydroxylase activity in chronic vitamin D deficiency was studied in male rats. These rats were born of mothers who had been raised from weaning (21 days) on a vitamin D deficient diet and who had no detectable serum 1,25-dihydroxycholecalciferol (1,25-(OH)2D) at the time their offspring were weaned (28 days). In the pups, renal mitochondrial 1-hydroxylase activity was undetectable before the 3rd week of life even though the animals were severely hypocalcemic from birth. The 1-hydroxylase activity first became detectable at 26 days of age, rapidly reached a maximum at day 34, then decreased to become undetectable again by 65 days. Throughout this time serum calcium concentration was less than 5.0 mg/dL and serum parathyroid hormone (PTH) concentration, measured by a midmolecule radioimmunoassay, was two- to five-fold greater than that found in vitamin D replete rats. 1-Hydroxylase activity could be restored in the +65-day-old animals by administration of a single dose of 2.5 micrograms vitamin D3. Enzyme activity was detected within 24 h, was maximal at 72 h, and returned to undetectable levels by 96 h after administration of the vitamin. Serum 1,25-(OH)2D which was undetectable before administration of the vitamin D3, was 108 and 458 pg/mL at 16 and 40 h, respectively, after the injection. The serum concentration of this metabolite then decreased progressively to 80 pg/mL by 6 days. 24-Hydroxylase activity first became detectable 48 h after vitamin D administration, increased to a maximum at 96 h, and thereafter decreased to become undetectable by 7 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A functional retinoblastoma protein (pRB) is required for adipose conversion of preadipocyte cell lines and primary mouse embryo fibroblasts (MEFs) in response to treatment with standard adipogenic inducers. Interestingly, lack of functional pRB in MEFs was recently linked to elevated Ras activity. Ras-dependent signaling plays a significant, although incompletely understood, role in adipocyte differentiation, because activated Ras has been reported to either promote or inhibit adipogenesis depending on the cellular context. In various cell types activation of Ras leads to activation of the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein kinase B (PKB)/Akt, which exert opposing effects on adipogenesis, with ERK1/2 inhibiting and PKB/Akt promoting terminal differentiation. Here we report that the levels of activated ERK1/2 and PKB/Akt are significantly increased in pRB-deficient MEFs both before and after the addition of adipogenic inducers. Consistently, we detected higher levels of activated Ras in MEFs lacking pRB. Suppression of ERK1/2 activation by the MEK inhibitor UO126 restored the ability of pRB-deficient MEFs to undergo adipocyte differentiation, as manifested by expression of adipocyte marker genes and lipid accumulation. Furthermore and reflecting the elevated levels of activated PKB/Akt in the pRB-deficient MEFs, differentiation proceeded in an insulin-independent manner. In conclusion, we suggest that pRB plays a pivotal role in adipogenesis by suppressing MAPK activity.  相似文献   

17.
1,25-Dihydroxyvitamin D(3) through its receptor (vitamin D receptor; VDR) has important physiological effects such as calcium transport and cell growth and differentiation. Although the VDR is present in a variety of cell lines as well as in numerous tissues, including rat and human heart, no data are available about the presence of VDR in heart at different steps of rat life. In this study we evaluated the VDR expression using RT-PCR and immunohistochemical techniques in fetal (17, 18 and 20 gestational days), neonatal (4 and 8 days) and adult rat heart. Immunohistochemical techniques showed the VDR protein localisation in the nuclei of cardiac muscle fibres. Also, we demonstrated that VDR mRNA expression is changing over these different periods of development, showing significant differences in 20 days versus 18 days of fetal age. These changes in VDR expression may be related to other parameters associated with the development of the cardiac muscle and/or intracellular cardiac cell calcium homeostasis.  相似文献   

18.
19.
The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a potent ligand for the nuclear receptor vitamin D receptor (VDR) and induces myeloid leukemia cell differentiation. The cardiotonic steroid bufalin enhances vitamin D-induced differentiation of leukemia cells and VDR transactivation activity. In this study, we examined the combined effects of 1,25(OH)2D3 and bufalin on differentiation and VDR target gene expression in human leukemia cells. Bufalin in combination with 1,25(OH)2D3 enhanced the expression of VDR target genes, such as CYP24A1 and cathelicidin antimicrobial peptide, and effectively induced differentiation phenotypes. An inhibitor of the Erk mitogen-activated protein (MAP) kinase pathway partially inhibited bufalin induction of VDR target gene expression. 1,25(OH)2D3 treatment induced transient nuclear expression of VDR in HL60 cells. Interestingly, bufalin enhanced 1,25(OH)2D3-induced nuclear VDR expression. The MAP kinase pathway inhibitor increased nuclear VDR expression induced by 1,25(OH)2D3 and did not change that by 1,25(OH)2D3 plus bufalin. A proteasome inhibitor also enhanced 1,25(OH)2D3-induced CYP24A1 expression and nuclear VDR expression. Bufalin-induced nuclear VDR expression was associated with histone acetylation and VDR recruitment to the CYP24A1 promoter in HL60 cells. Thus, the Na+,K+-ATPase inhibitor bufalin modulates VDR function through several mechanisms, including Erk MAP kinase activation and increased nuclear VDR expression.  相似文献   

20.
Three-dimensional structure of the ligand binding domain (LBD) of the vitamin D receptor (VDR) docked with the natural ligand 1 alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] has been mostly solved by the X-ray crystallographic analysis of the deletion mutant (VDR-LBD Delta 165-215). The important focus, from now on, is how the VDR recognizes and interacts with potent synthetic ligands. We now report the docking models of the VDR with three functionally and structurally interesting ligands, 22-oxa-1,25-(OH)(2)D(3) (OCT), 20-epi-1,25-(OH)(2)D(3) and 20-epi-22-oxa-24,26,27-trihomo-1,25-(OH)(2)D(3). In parallel with the computational docking studies, we prepared twelve one-point mutants of amino acid residues lining the ligand binding pocket of the VDR and examined their transactivation potency induced by 1,25-(OH)(2)D(3) and these synthetic ligands. The results indicate that L233, R274, W286, H397 and Y401 are essential for holding the all ligands tested, S278 and Q400 are not important at all, and the importance of S237, V234, S275, C288 and H305 is variable depending on the side-chain structure of the ligands. Based on these studies, we suggested key structural factors to bestow the selective action on OCT and the augmented activities on 20-epi-ligands. Furthermore, the docking models coincided well with our proposed active space-region theory of vitamin D based on the conformational analyses of ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号