首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
MOTIVATION: Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false positives, i.e. structures with good surface complementarity but far from the native. RESULTS: We have developed a fast algorithm for filtering docked conformations with good surface complementarity, and ranking them based on their clustering properties. The free energy filters select complexes with lowest desolvation and electrostatic energies. Clustering is then used to smooth the local minima and to select the ones with the broadest energy wells-a property associated with the free energy at the binding site. The robustness of the method was tested on sets of 2000 docked conformations generated for 48 pairs of interacting proteins. In 31 of these cases, the top 10 predictions include at least one near-native complex, with an average RMSD of 5 A from the native structure. The docking and discrimination method also provides good results for a number of complexes that were used as targets in the Critical Assessment of PRedictions of Interactions experiment. AVAILABILITY: The fully automated docking and discrimination server ClusPro can be found at http://structure.bu.edu  相似文献   

3.
The seventh CAPRI edition imposed new challenges to the modeling of protein-protein complexes, such as multimeric oligomerization, protein-peptide, and protein-oligosaccharide interactions. Many of the proposed targets needed the efficient integration of rigid-body docking, template-based modeling, flexible optimization, multiparametric scoring, and experimental restraints. This was especially relevant for the multimolecular assemblies proposed in the CASP12-CAPRI37 and CASP13-CAPRI46 joint rounds, which were described and evaluated elsewhere. Focusing on the purely CAPRI targets of this edition (rounds 38-45), we have participated in all 17 assessed targets (considering heteromeric and homomeric interfaces in T125 as two separate targets) both as predictors and as scorers, by using integrative modeling based on our docking and scoring approaches: pyDock, IRaPPA, and LightDock. In the protein-protein and protein-peptide targets, we have also participated with our webserver (pyDockWeb). On these 17 CAPRI targets, we submitted acceptable models (or better) within our top 10 models for 10 targets as predictors, 13 targets as scorers, and 4 targets as servers. In summary, our participation in this CAPRI edition confirmed the capabilities of pyDock for the scoring of docking models, increasingly used within the context of integrative modeling of protein interactions and multimeric assemblies.  相似文献   

4.
CAPRI is a communitywide experiment to assess the capacity of protein-docking methods to predict protein-protein interactions. Nineteen groups participated in rounds 1 and 2 of CAPRI and submitted blind structure predictions for seven protein-protein complexes based on the known structure of the component proteins. The predictions were compared to the unpublished X-ray structures of the complexes. We describe here the motivations for launching CAPRI, the rules that we applied to select targets and run the experiment, and some conclusions that can already be drawn. The results stress the need for new scoring functions and for methods handling the conformation changes that were observed in some of the target systems. CAPRI has already been a powerful drive for the community of computational biologists who development docking algorithms. We hope that this issue of Proteins will also be of interest to the community of structural biologists, which we call upon to provide new targets for future rounds of CAPRI, and to all molecular biologists who view protein-protein recognition as an essential process.  相似文献   

5.

Background  

Protein-protein interactions are fundamental for the majority of cellular processes and their study is of enormous biotechnological and therapeutic interest. In recent years, a variety of computational approaches to the protein-protein docking problem have been reported, with encouraging results. Most of the currently available protein-protein docking algorithms are composed of two clearly defined parts: the sampling of the rotational and translational space of the interacting molecules, and the scoring and clustering of the resulting orientations. Although this kind of strategy has shown some of the most successful results in the CAPRI blind test , more efforts need to be applied. Thus, the sampling protocol should generate a pool of conformations that include a sufficient number of near-native ones, while the scoring function should discriminate between near-native and non-near-native proposed conformations. On the other hand, protocols to efficiently include full flexibility on the protein structures are increasingly needed.  相似文献   

6.
Khashan R  Zheng W  Tropsha A 《Proteins》2012,80(9):2207-2217
Accurate prediction of the structure of protein-protein complexes in computational docking experiments remains a formidable challenge. It has been recognized that identifying native or native-like poses among multiple decoys is the major bottleneck of the current scoring functions used in docking. We have developed a novel multibody pose-scoring function that has no theoretical limit on the number of residues contributing to the individual interaction terms. We use a coarse-grain representation of a protein-protein complex where each residue is represented by its side chain centroid. We apply a computational geometry approach called Almost-Delaunay tessellation that transforms protein-protein complexes into a residue contact network, or an undirectional graph where vertex-residues are nodes connected by edges. This treatment forms a family of interfacial graphs representing a dataset of protein-protein complexes. We then employ frequent subgraph mining approach to identify common interfacial residue patterns that appear in at least a subset of native protein-protein interfaces. The geometrical parameters and frequency of occurrence of each "native" pattern in the training set are used to develop the new SPIDER scoring function. SPIDER was validated using standard "ZDOCK" benchmark dataset that was not used in the development of SPIDER. We demonstrate that SPIDER scoring function ranks native and native-like poses above geometrical decoys and that it exceeds in performance a popular ZRANK scoring function. SPIDER was ranked among the top scoring functions in a recent round of CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods.  相似文献   

7.
Comeau SR  Vajda S  Camacho CJ 《Proteins》2005,60(2):239-244
To evaluate the current status of the protein-protein docking field, the CAPRI experiment came to life. Researchers are given the receptor and ligand 3-dimensional (3D) coordinates before the cocrystallized complex is published. Human predictions of the complex structure are supposed to be submitted within 3 weeks, whereas the server ClusPro has only 24 h and does not make use of any biochemical information. From the 10 targets analyzed in the second evaluation meeting of CAPRI, ClusPro was able to predict meaningful models for 5 targets using only empirical free energy estimates. For two of the targets, the server predictions were assessed to be among the best in the field. Namely, for Targets 8 and 12, ClusPro predicted the model with the most accurate binding-site interface and the model with the highest percentage of nativelike contacts, among 180 and 230 submissions, respectively. After CAPRI, the server has been further developed to predict oligomeric assemblies, and new tools now allow the user to restrict the search for the complex to specific regions on the protein surface, significantly enhancing the predictive capabilities of the server. The performance of ClusPro in CAPRI Rounds 3-5 suggests that clustering the low free energy (i.e., desolvation and electrostatic energy) conformations of a homogeneous conformational sampling of the binding interface is a fast and reliable procedure to detect protein-protein interactions and eliminate false positives. Not including targets that had a significant structural rearrangement upon binding, the success rate of ClusPro was found to be around 71%.  相似文献   

8.
Improved side-chain modeling for protein-protein docking   总被引:1,自引:0,他引:1  
Success in high-resolution protein-protein docking requires accurate modeling of side-chain conformations at the interface. Most current methods either leave side chains fixed in the conformations observed in the unbound protein structures or allow the side chains to sample a set of discrete rotamer conformations. Here we describe a rapid and efficient method for sampling off-rotamer side-chain conformations by torsion space minimization during protein-protein docking starting from discrete rotamer libraries supplemented with side-chain conformations taken from the unbound structures, and show that the new method improves side-chain modeling and increases the energetic discrimination between good and bad models. Analysis of the distribution of side-chain interaction energies within and between the two protein partners shows that the new method leads to more native-like distributions of interaction energies and that the neglect of side-chain entropy produces a small but measurable increase in the number of residues whose interaction energy cannot compensate for the entropic cost of side-chain freezing at the interface. The power of the method is highlighted by a number of predictions of unprecedented accuracy in the recent CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods.  相似文献   

9.
Gong XQ  Chang S  Zhang QH  Li CH  Shen LZ  Ma XH  Wang MH  Liu B  He HQ  Chen WZ  Wang CX 《Proteins》2007,69(4):859-865
Protein-protein docking is usually exploited with a two-step strategy, i.e., conformational sampling and decoy scoring. In this work, a new filter enhanced sampling scheme was proposed and added into the RosettaDock algorithm to improve the conformational sampling efficiency. The filter term is based on the statistical result that backbone hydrogen bonds in the native protein structures are wrapped by more than nine hydrophobic groups to shield them from attacks of water molecules (Fernandez and Scheraga, Proc Natl Acad Sci USA 2003;100:113-118). A combinatorial scoring function, ComScore, specially designed for the other-type protein-protein complexes was also adopted to select the near native docked modes. ComScore was composed of the atomic contact energy, van der Waals, and electrostatic interaction energies, and the weight of each item was fit through the multiple linear regression approach. To analyze our docking results, the filter enhanced sampling scheme was applied to targets T12, T20, and T21 after the CAPRI blind test, and improvements were obtained. The ligand least root mean square deviations (L_rmsds) were reduced and the hit numbers were increased. ComScore was used in the scoring test for CAPRI rounds 9-12 with good success in rounds 9 and 11.  相似文献   

10.
Critical Assessment of PRedicted Interactions (CAPRI) has proven to be a catalyst for the development of docking algorithms. An essential step in docking is the scoring of predicted binding modes in order to identify stable complexes. In 2005, CAPRI introduced the scoring experiment, where upon completion of a prediction round, a larger set of models predicted by different groups and comprising both correct and incorrect binding modes, is made available to all participants for testing new scoring functions independently from docking calculations. Here we present an expanded benchmark data set for testing scoring functions, which comprises the consolidated ensemble of predicted complexes made available in the CAPRI scoring experiment since its inception. This consolidated scoring benchmark contains predicted complexes for 15 published CAPRI targets. These targets were subjected to 23 CAPRI assessments, due to existence of multiple binding modes for some targets. The benchmark contains more than 19,000 protein complexes. About 10% of the complexes represent docking predictions of acceptable quality or better, the remainder represent incorrect solutions (decoys). The benchmark set contains models predicted by 47 different predictor groups including web servers, which use different docking and scoring procedures, and is arguably as diverse as one may expect, representing the state of the art in protein docking. The data set is publicly available at the following URL: http://cb.iri.univ‐lille1.fr/Users/lensink/Score_set . Proteins 2014; 82:3163–3169. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Clustering is one of the most powerful tools in computational biology. The conventional wisdom is that events that occur in clusters are probably not random. In protein docking, the underlying principle is that clustering occurs because long-range electrostatic and/or desolvation forces steer the proteins to a low free-energy attractor at the binding region. Something similar occurs in the docking of small molecules, although in this case shorter-range van der Waals forces play a more critical role. Based on the above, we have developed two different clustering strategies to predict docked conformations based on the clustering properties of a uniform sampling of low free-energy protein-protein and protein-small molecule complexes. We report on significant improvements in the automated prediction and discrimination of docked conformations by using the cluster size and consensus as a ranking criterion. We show that the success of clustering depends on identifying the appropriate clustering radius of the system. The clustering radius for protein-protein complexes is consistent with the range of the electrostatics and desolvation free energies (i.e., between 4 and 9 Angstroms); for protein-small molecule docking, the radius is set by van der Waals interactions (i.e., at approximately 2 Angstroms). Without any a priori information, a simple analysis of the histogram of distance separations between the set of docked conformations can evaluate the clustering properties of the data set. Clustering is observed when the histogram is bimodal. Data clustering is optimal if one chooses the clustering radius to be the minimum after the first peak of the bimodal distribution. We show that using this optimal radius further improves the discrimination of near-native complex structures.  相似文献   

12.
Structures of proteins complexed with other proteins, peptides, or ligands are essential for investigation of molecular mechanisms. However, the experimental structures of protein complexes of interest are often not available. Therefore, computational methods are widely used to predict these structures, and, of those methods, template-based modeling is the most successful. In the rounds 38-45 of the Critical Assessment of PRediction of Interactions (CAPRI), we applied template-based modeling for 9 of 11 protein-protein and protein-peptide interaction targets, resulting in medium and high-quality models for six targets. For the protein-oligosaccharide docking targets, we used constraints derived from template structures, and generated models of at least acceptable quality for most of the targets. Apparently, high flexibility of oligosaccharide molecules was the main cause preventing us from obtaining models of higher quality. We also participated in the CAPRI scoring challenge, the goal of which was to identify the highest quality models from a large pool of decoys. In this experiment, we tested VoroMQA, a scoring method based on interatomic contact areas. The results showed VoroMQA to be quite effective in scoring strongly binding and obligatory protein complexes, but less successful in the case of transient interactions. We extensively used manual intervention in both CAPRI modeling and scoring experiments. This oftentimes allowed us to select the correct templates from available alternatives and to limit the search space during the model scoring.  相似文献   

13.
Critical Assessment of PRediction of Interactions (CAPRI) rounds 37 through 45 introduced larger complexes, new macromolecules, and multistage assemblies. For these rounds, we used and expanded docking methods in Rosetta to model 23 target complexes. We successfully predicted 14 target complexes and recognized and refined near-native models generated by other groups for two further targets. Notably, for targets T110 and T136, we achieved the closest prediction of any CAPRI participant. We created several innovative approaches during these rounds. Since round 39 (target 122), we have used the new RosettaDock 4.0, which has a revamped coarse-grained energy function and the ability to perform conformer selection during docking with hundreds of pregenerated protein backbones. Ten of the complexes had some degree of symmetry in their interactions, so we tested Rosetta SymDock, realized its shortcomings, and developed the next-generation symmetric docking protocol, SymDock2, which includes docking of multiple backbones and induced-fit refinement. Since the last CAPRI assessment, we also developed methods for modeling and designing carbohydrates in Rosetta, and we used them to successfully model oligosaccharide-protein complexes in round 41. Although the results were broadly encouraging, they also highlighted the pressing need to invest in (a) flexible docking algorithms with the ability to model loop and linker motions and in (b) new sampling and scoring methods for oligosaccharide-protein interactions.  相似文献   

14.
Here we present version 2.0 of HADDOCK, which incorporates considerable improvements and new features. HADDOCK is now able to model not only protein-protein complexes but also other kinds of biomolecular complexes and multi-component (N > 2) systems. In the absence of any experimental and/or predicted information to drive the docking, HADDOCK now offers two additional ab initio docking modes based on either random patch definition or center-of-mass restraints. The docking protocol has been considerably improved, supporting among other solvated docking, automatic definition of semi-flexible regions, and inclusion of a desolvation energy term in the scoring scheme. The performance of HADDOCK2.0 is evaluated on the targets of rounds 4-11, run in a semi-automated mode using the original information we used in our CAPRI submissions. This enables a direct assessment of the progress made since the previous versions. Although HADDOCK performed very well in CAPRI (65% and 71% success rates, overall and for unbound targets only, respectively), a substantial improvement was achieved with HADDOCK2.0.  相似文献   

15.
Integration of template-based modeling, global sampling and precise scoring is crucial for the development of molecular docking programs with improved accuracy. We combined template-based modeling and ab-initio docking protocol as hybrid docking strategy called CoDock for the docking and scoring experiments of the seventh CAPRI edition. For CAPRI rounds 38-45, we obtained acceptable or better models in the top 10 submissions for eight out of the 16 evaluated targets as predictors, nine out of the 16 targets as scorers. Especially, we submitted acceptable models for all of the evaluated protein-oligosaccharide targets. For the CASP13-CAPRI experiment (round 46), we obtained acceptable or better models in the top 5 submissions for 10 out of the 20 evaluated targets as predictors, 11 out of the 20 targets as scorers. The failed cases for our group were mainly the difficult targets and the protein-peptide systems in CAPRI and CASP13-CAPRI experiments. In summary, this CAPRI edition showed that our hybrid docking strategy can be efficiently adapted to the increasing variety of challenges in the field of molecular interactions.  相似文献   

16.
A protein-protein docking procedure traditionally consists in two successive tasks: a search algorithm generates a large number of candidate conformations mimicking the complex existing in vivo between two proteins, and a scoring function is used to rank them in order to extract a native-like one. We have already shown that using Voronoi constructions and a well chosen set of parameters, an accurate scoring function could be designed and optimized. However to be able to perform large-scale in silico exploration of the interactome, a near-native solution has to be found in the ten best-ranked solutions. This cannot yet be guaranteed by any of the existing scoring functions. In this work, we introduce a new procedure for conformation ranking. We previously developed a set of scoring functions where learning was performed using a genetic algorithm. These functions were used to assign a rank to each possible conformation. We now have a refined rank using different classifiers (decision trees, rules and support vector machines) in a collaborative filtering scheme. The scoring function newly obtained is evaluated using 10 fold cross-validation, and compared to the functions obtained using either genetic algorithms or collaborative filtering taken separately. This new approach was successfully applied to the CAPRI scoring ensembles. We show that for 10 targets out of 12, we are able to find a near-native conformation in the 10 best ranked solutions. Moreover, for 6 of them, the near-native conformation selected is of high accuracy. Finally, we show that this function dramatically enriches the 100 best-ranking conformations in near-native structures.  相似文献   

17.
The protein docking problem has two major aspects: sampling conformations and orientations, and scoring them for fit. To investigate the extent to which the protein docking problem may be attributed to the sampling of ligand side‐chain conformations, multiple conformations of multiple residues were calculated for the uncomplexed (unbound) structures of protein ligands. These ligand conformations were docked into both the complexed (bound) and unbound conformations of the cognate receptors, and their energies were evaluated using an atomistic potential function. The following questions were considered: (1) does the ensemble of precalculated ligand conformations contain a structure similar to the bound form of the ligand? (2) Can the large number of conformations that are calculated be efficiently docked into the receptors? (3) Can near‐native complexes be distinguished from non‐native complexes? Results from seven test systems suggest that the precalculated ensembles do include side‐chain conformations similar to those adopted in the experimental complexes. By assuming additivity among the side chains, the ensemble can be docked in less than 12 h on a desktop computer. These multiconformer dockings produce near‐native complexes and also non‐native complexes. When docked against the bound conformations of the receptors, the near‐native complexes of the unbound ligand were always distinguishable from the non‐native complexes. When docked against the unbound conformations of the receptors, the near‐native dockings could usually, but not always, be distinguished from the non‐native complexes. In every case, docking the unbound ligands with flexible side chains led to better energies and a better distinction between near‐native and non‐native fits. An extension of this algorithm allowed for docking multiple residue substitutions (mutants) in addition to multiple conformations. The rankings of the docked mutant proteins correlated with experimental binding affinities. These results suggest that sampling multiple residue conformations and residue substitutions of the unbound ligand contributes to, but does not fully provide, a solution to the protein docking problem. Conformational sampling allows a classical atomistic scoring function to be used; such a function may contribute to better selectivity between near‐native and non‐native complexes. Allowing for receptor flexibility may further extend these results.  相似文献   

18.
Yue Cao  Yang Shen 《Proteins》2020,88(8):1091-1099
Structural information about protein-protein interactions, often missing at the interactome scale, is important for mechanistic understanding of cells and rational discovery of therapeutics. Protein docking provides a computational alternative for such information. However, ranking near-native docked models high among a large number of candidates, often known as the scoring problem, remains a critical challenge. Moreover, estimating model quality, also known as the quality assessment problem, is rarely addressed in protein docking. In this study, the two challenging problems in protein docking are regarded as relative and absolute scoring, respectively, and addressed in one physics-inspired deep learning framework. We represent protein and complex structures as intra- and inter-molecular residue contact graphs with atom-resolution node and edge features. And we propose a novel graph convolutional kernel that aggregates interacting nodes’ features through edges so that generalized interaction energies can be learned directly from 3D data. The resulting energy-based graph convolutional networks (EGCN) with multihead attention are trained to predict intra- and inter-molecular energies, binding affinities, and quality measures (interface RMSD) for encounter complexes. Compared to a state-of-the-art scoring function for model ranking, EGCN significantly improves ranking for a critical assessment of predicted interactions (CAPRI) test set involving homology docking; and is comparable or slightly better for Score_set, a CAPRI benchmark set generated by diverse community-wide docking protocols not known to training data. For Score_set quality assessment, EGCN shows about 27% improvement to our previous efforts. Directly learning from 3D structure data in graph representation, EGCN represents the first successful development of graph convolutional networks for protein docking.  相似文献   

19.
Shen Y  Brenke R  Kozakov D  Comeau SR  Beglov D  Vajda S 《Proteins》2007,69(4):734-742
Our approach to protein-protein docking includes three main steps. First we run PIPER, a new rigid body docking program. PIPER is based on the Fast Fourier Transform (FFT) correlation approach that has been extended to use pairwise interactions potentials, thereby substantially increasing the number of near-native structures generated. The interaction potential is also new, based on the DARS (Decoys As the Reference State) principle. In the second step, the 1000 best energy conformations are clustered, and the 30 largest clusters are retained for refinement. Third, the conformations are refined by a new medium-range optimization method SDU (Semi-Definite programming based Underestimation). SDU has been developed to locate global minima within regions of the conformational space in which the energy function is funnel-like. The method constructs a convex quadratic underestimator function based on a set of local energy minima, and uses this function to guide future sampling. The combined method performed reliably without the direct use of biological information in most CAPRI problems that did not require homology modeling, providing acceptable predictions for targets 21, and medium quality predictions for targets 25 and 26.  相似文献   

20.
MOTIVATION: Protein-protein complexes are known to play key roles in many cellular processes. However, they are often not accessible to experimental study because of their low stability and difficulty to produce the proteins and assemble them in native conformation. Thus, docking algorithms have been developed to provide an in silico approach of the problem. A protein-protein docking procedure traditionally consists of two successive tasks: a search algorithm generates a large number of candidate solutions, and then a scoring function is used to rank them. RESULTS: To address the second step, we developed a scoring function based on a Vorono? tessellation of the protein three-dimensional structure. We showed that the Vorono? representation may be used to describe in a simplified but useful manner, the geometric and physico-chemical complementarities of two molecular surfaces. We measured a set of parameters on native protein-protein complexes and on decoys, and used them as attributes in several statistical learning procedures: a logistic function, Support Vector Machines (SVM), and a genetic algorithm. For the later, we used ROGER, a genetic algorithm designed to optimize the area under the receiver operating characteristics curve. To further test the scores derived with ROGER, we ranked models generated by two different docking algorithms on targets of a blind prediction experiment, improving in almost all cases the rank of native-like solutions. AVAILABILITY: http://genomics.eu.org/spip/-Bioinformatics-tools-  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号