首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Currently, few factors have been identified that provide the inductive signals necessary to transform the simple otic placode into the complex asymmetric structure of the adult vertebrate inner ear. We provide evidence that Hedgehog signalling from ventral midline structures acts directly on the zebrafish otic vesicle to induce posterior otic identity. We demonstrate that two strong Hedgehog pathway mutants, chameleon (con(tf18b)) and slow muscle omitted (smu(b641)) exhibit a striking partial mirror image duplication of anterior otic structures, concomitant with a loss of posterior otic domains. These effects can be phenocopied by overexpression of patched1 mRNA to reduce Hedgehog signalling. Ectopic activation of the Hedgehog pathway, by injection of sonic hedgehog or dominant-negative protein kinase A RNA, has the reverse effect: ears lose anterior otic structures and show a mirror image duplication of posterior regions. By using double mutants and antisense morpholino analysis, we also show that both Sonic hedgehog and Tiggy-winkle hedgehog are involved in anteroposterior patterning of the zebrafish otic vesicle.  相似文献   

2.
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved.  相似文献   

3.
Protein kinase CK1 is a ser/thr protein kinase family which has been identified in the cytosol cell fraction, associated with membranes as well as in the nucleus. Several isoforms of this gene family have been described in various organisms: CK1alpha, CK1beta, CK1delta, CK1epsilon and CK1gamma. Over the last decade, several members of this family have been involved in development processes related to wnt and sonic hedgehog signalling pathways. However, there is no detailed temporal information on the CK1 family in embryonic stages, even though orthologous genes have been described in several different vertebrate species. In this study, we describe for the first time the cloning and detailed expression pattern of five CK1 zebrafish genes. Sequence analysis revealed that zebrafish CK1 proteins are highly homologous to other vertebrate orthologues. Zebrafish CK1 genes are expressed throughout development in common and different territories. All the genes studied in development show maternal and zygotic expression with the exception of CK1epsilon. This last gene presents only a zygotic component of expression. In early stages of development CK1 genes are ubiquitously expressed with the exception of CK1epsilon. In later stages the five CK1 genes are expressed in the brain but not in the same way. This observation probably implicates the CK1 family genes in different and also in redundant functions. This is the first time that a detailed comparison of the expression of CK1 family genes is directly assessed in a vertebrate system throughout development.  相似文献   

4.
In zebrafish, Hedgehog (Hh) signalling is required to specify posterior otic identity. This presents a conundrum, as the nearest source of Hh to the developing inner ear is the ventral midline, in the notochord and floorplate. How can a source of Hh that is ostensibly constant with respect to the anteroposterior axis of the otic vesicle specify posterior otic identity? One possibility is that localised inhibition of Hh signalling is involved. Here we show that genes coding for three inhibitors of Hh signalling, su(fu), dzip1 and hip, are expressed in and around the developing otic vesicle. su(fu) and dzip1 are ubiquitously expressed and unaffected by Hh levels. The expression of hip, however, is positively regulated by Hh signalling and has a complex, dynamic pattern. It is detectable in the neural tube, otic vesicle, statoacoustic ganglion, brain, fin buds, mouth, somites, pronephros and branchial arches. These expression domains bear some similarity, but are not identical, to those of ptc1, a Hh receptor gene that is also positively regulated by Hh signalling. In the neural tube, for instance, hip is expressed in a subset of the ptc1 expression domain, while in other regions, including the otic vesicle, hip and ptc1 expression domains differ. Significantly, we find that initial expression of hip is higher in and adjacent to anterior otic regions, while ptc1 expression becomes progressively restricted to the posterior of the ear. Hip-mediated inhibition of Hh signalling may therefore be important in restricting the effects of Hh to posterior regions of the developing inner ear.  相似文献   

5.
6.
Hair cells of the inner ear sensory organs originate from progenitor cells located at specific domains of the otic vesicle: the prosensory patches. Notch signalling is necessary for sensory development and loss of function of the Notch ligand jagged 1 (Jag1, also known as serrate 1) results in impaired sensory organs. However, the underlying mechanism of Notch function is unknown. Our results show that in the chicken otic vesicle, the Sox2 expression domain initially contains the nascent patches of Jag1 expression but, later on, Sox2 is only maintained in the Jag1-positive domains. Ectopic human JAG1 (hJag1) is able to induce Sox2 expression and enlarged sensory organs. The competence to respond to hJag1, however, is confined to the regions that expressed Sox2 early in development, suggesting that hJag1 maintains Sox2 expression rather than inducing it de novo. The effect is non-cell-autonomous and requires Notch signalling. hJag1 activates Notch, induces Hes/Hey genes and endogenous Jag1 in a non-cell-autonomous manner, which is consistent with lateral induction. The effects of hJag1 are mimicked by Jag2 but not by Dl1. Sox2 is sufficient to activate the Atoh1 enhancer and to ectopically induce sensory cell fate outside neurosensory-competent domains. We suggest that the prosensory function of Jag1 resides in its ability to generate discrete domains of Notch activity that maintain Sox2 expression within restricted areas of an extended neurosensory-competent domain. This provides a mechanism to couple patterning and cell fate specification during the development of sensory organs.  相似文献   

7.
The primary immune response against sheep red blood cells in T cell-deficient spleen cell cultures from nude mice was tested in the absence and presence of allogeneic spleen cells. The allogeneic spleen cells differed either in regard to the major histocompatibility complex (H-2) or only with respect to the M-locus. Surprisingly the M-locus different spleen cells were almost as efficient in enhancing the anti-sheep red blood cell response in nude cultures as were the cells differing on the complete H-2 complex. Evidence is presented that AKR anti-theta serum sensitive T cells are responsible for the M-locus-dependent effect edscribed. This effect is shown to be mediated by a factor released from actived T cells stimulated in M-locus different mixed lymphocyte cultures. Since almost identical parameters have been observed in both the M-locus-dependent situation as in the "classical" allogeneic situation we concluded that an allogeneic effect can be induced by T cells responding to a complete set of the major histocompatibility complex (H-2) as well as to lymphocyte-activating determinants (M-locus) alone.  相似文献   

8.
Fatty acid-binding protein type 1 (FABP1), commonly termed liver-type fatty acid-binding protein (L-FABP), is encoded by a single gene in mammals. We cloned and sequenced cDNAs for two distinct FABP1s in zebrafish coded by genes designated fabp1a and fabp1b. The zebrafish proteins, FABP1a and FABP1b, show highest sequence identity and similarity to the human protein FABP1. Zebrafish fabp1a and fabp1b genes were assigned to linkage groups 5 and 8, respectively. Both linkage groups show conserved syntenies to a segment of mouse chromosome 6, rat chromosome 4 and human chromosome 2 harboring the FABP1 locus. Phylogenetic analysis further suggests that zebrafish fabp1a and fabp1b genes are orthologs of mammalian FABP1 and most likely arose by a whole-genome duplication event in the ray-finned fish lineage, estimated to have occurred 200-450 million years ago. The paralogous fabp10 gene encoding basic L-FABP, found to date in only nonmammalian vertebrates, was assigned to zebrafish linkage group 16. RT-PCR amplification of mRNA in adults, and in situ hybridization to whole-mount embryos to fabp1a, fabp1b and fapb10 mRNAs, revealed a distinct and differential pattern of expression for the fabp1a, fabp1b and fabp10 genes in zebrafish, suggesting a division of function for these orthogolous and paralogous gene products following their duplication in the vertebrate genome. The differential and complementary expression patterns of the zebrafish fabp1a, fapb1b and fabp10 genes imply a hierarchical subfunctionalization that may account for the retention of both the duplicated fabp1a and fabp1b genes, and the fabp10 gene in the zebrafish genome.  相似文献   

9.
To understand the molecular basis of sensory organ development and disease, we have cloned and characterized the zebrafish mutation dog-eared (dog) that is defective in formation of the inner ear and lateral line sensory systems. The dog locus encodes the eyes absent-1 (eya1) gene and single point mutations were found in three independent dog alleles, each prematurely truncating the expressed protein within the Eya domain. Moreover, morpholino-mediated knockdown of eya1 gene function phenocopies the dog-eared mutation. In zebrafish, the eya1 gene is widely expressed in placode-derived sensory organs during embryogenesis but Eya1 function appears to be primarily required for survival of sensory hair cells in the developing ear and lateral line neuromasts. Increased levels of apoptosis occur in the migrating primordia of the posterior lateral line in dog embryos and as well as in regions of the developing otocyst that are mainly fated to give rise to sensory cells of the cristae. Importantly, mutation of the EYA1 or EYA4 gene causes hereditary syndromic deafness in humans. Determination of eya gene function during zebrafish organogenesis will facilitate understanding the molecular etiology of human vestibular and hearing disorders.  相似文献   

10.
11.
In vertebrates, pigment cells account for a small percentage of the total cell population and they intermingle with other cell types. This makes it difficult to isolate them for analyzes of their functions in the context of development. To alleviate such difficulty, we generated two stable transgenic zebrafish lines (pt101 and pt102) that express green fluorescent protein (GFP) in melanophores under the control of the 1 kb Fugu tyrp1 promoter. In pt101, GFP is expressed in both retinal pigment epithelium (RPE) cells and the neural crest-derived melanophores (NCDM), whereas in pt102, GFP is predominately expressed in the NCDM. Our results indicate that the Fugu tyrp1 promoter can direct transgene expression in a cell-type-specific manner in zebrafish. In addition, our findings provide evidence supporting differential regulations of melanin-synthesizing genes in RPE cells and the NCDM in zebrafish. Utilizing the varying GFP expression levels in these fish, we have isolated melanophores via flow cytometry and revealed the capability of sorting the NCDM from RPE cells as well. Thus, these transgenic lines are useful tools to study melanophores in zebrafish.  相似文献   

12.
Retinoic acid (RA) is metabolised from its precursor, retinol (vitamin A). In mammalian embryos, retinol is provided by the mother via the placenta and in birds retinol comes from the yolk. We have studied the role of RA in CNS development in quail embryos by depriving adult quails of retinol in the diet which results in them laying eggs which have no retinol stores. The resulting embryos are therefore retinol and RA deficient. The CNS of these embryos is abnormal in three regards; patterning, neural crest production and neurite outgrowth. With regard to patterning, at an early stage of development prior to somitogenesis, hindbrain patterning genes are not induced which leads to the respecification of the posterior hindbrain territory. This region is not lost from the embryo but instead becomes transformed into an enlarged anterior hindbrain. Another aspect of patterning that is abnormal in these RA deficient embryos is the dorsoventral gene expression domains in the anterior spinal cord. These domains are required for the proper specification of motor neurons, sensory neurons and various classes of interneurons. Consequently these neuronal classes are mis‐specified in the RA deficient embryos. With regard to the neural crest, these cells often fail to migrate correctly and then die in the absence of RA. With regard to neurite outgrowth, very little outgrowth seems to take place in these deficient embryos which suggests that RA is involved in neurite outgrowth. Taking these experiments into the adult to examine the role of RA in neurite regeneration, we have had success in inducing neurite outgrowth in vitro from adult mouse spinal cord by manipulating the retinoic acid receptors which transduce the RA signal at the level of the nucleus.  相似文献   

13.
In vertebrates, pigment cells account for a small percentage of the total cell population and they intermingle with other cell types. This makes it difficult to isolate them for analyzes of their functions in the context of development. To alleviate such difficulty, we generated two stable transgenic zebrafish lines (pt101 and pt102) that express green fluorescent protein (GFP) in melanophores under the control of the 1 kb Fugu tyrp1 promoter. In pt101, GFP is expressed in both retinal pigment epithelium (RPE) cells and the neural crest‐derived melanophores (NCDM), whereas in pt102, GFP is predominately expressed in the NCDM. Our results indicate that the Fugu tyrp1 promoter can direct transgene expression in a cell‐type‐specific manner in zebrafish. In addition, our findings provide evidence supporting differential regulations of melanin‐synthesizing genes in RPE cells and the NCDM in zebrafish. Utilizing the varying GFP expression levels in these fish, we have isolated melanophores via flow cytometry and revealed the capability of sorting the NCDM from RPE cells as well. Thus, these transgenic lines are useful tools to study melanophores in zebrafish.  相似文献   

14.
Zebrafish teeth develop on pharyngeal jaws in the 5th branchial arch, but early tooth development is remarkably similar to mammals (Borday-Birraux et al., Evol Dev 8:130, 2006). Recently, eve1 has been shown to be associated with the primary tooth (4V1) and early ameloblast development, the enamel organ precursor (Laurenti et al., Dev Dyn 230:727, 2004). dax1 is initially expressed in the 5th branchial arch in zebrafish at approximately 26 h postfertilization (hpf) and colocalizes with eve1 expression at ~48 hpf. Embryos injected with dax1 morpholino show downregulation of eve1 expression. Based on the zebrafish observations, we demonstrated novel DAX1 expression in normal human dental, benign ameloblastoma, and malignant ameloblastoma tissues. The association of NR0B1 and its protein product DAX1 with primary tooth development and ameloblastoma tumorigenesis is an association not previously described.  相似文献   

15.
16.
Apolipoprotein E2, which has an R158 for C substitution, has reduced affinity for the LDL receptor and is associated with type III hyperlipoproteinemia in humans. Consistent with these observations, we have found that following adenovirus-mediated gene transfer, full-length apoE2 aggravates the hypercholesterolemia and induces hypertriglyceridemia in E-deficient mice and induces combined hyperlipidemia in C57BL/6 mice. Unexpectedly, the truncated apoE2-202 form that has an R158 for C substitution when expressed at levels similar to those of the full-length apoE2 normalized the cholesterol levels of E-deficient mice without induction of hypertriglyceridemia. The apoE2 truncation increased the affinity of POPC-apoE particles for the LDL receptor, and the full-length apoE2 had a dominant effect in VLDL triglyceride secretion. Hyperlipidemia in normal C57BL/6 mice was prevented by coinfection with equal doses of each, the apoE2 and the apoE2-202-expressing adenoviruses, indicating that truncated apoE forms have a dominant effect in remnant clearance. Hypertriglyceridemia was completely corrected by coinfection of mice with an adenovirus-expressing wild-type lipoprotein lipase, whereas an inactive lipoprotein lipase had a smaller effect. The findings suggest that the apoE2-induced dyslipidemia is not merely the result of substitution of R158 for C but results from increased secretion of a triglyceride-enriched VLDL that cannot undergo lipolysis, inhibition of LpL activity, and impaired clearance of chylomicron remnants. Infection of E(-)(/)(-)xLDLr(-)(/)(-) double-deficient mice with apoE2-202 did not affect the plasma cholesterol levels, and also did not induce hypertriglyceridemia. In contrast, apoE2 exacerbated the hypercholesterolemia and induced hypertriglyceridemia, suggesting that the LDL receptor is the predominant receptor in remnant clearance.  相似文献   

17.
18.
19.
Establishing cells with an exogenously introduced gene of interest under the inducible control of tetracycline (Tc) initially requires clonal cell lines stably expressing the tetracycline activator (tTA or rtTA). The originally described plasmid vectors expressing tTA/rtTA are driven by the cytomegalovirus (CMV) immediate early (IE) promoter-enhancer, known for its robust activity in a wide spectrum of cell types. While many reports testify to the utility and efficacy of this construct, instances of inexplicable failure to establish cell lines having inducible expression of the cDNA under study are encountered. Spontaneous extinction of CMV promoter activity in cells has been observed in a temporal and cell type-dependent manner. This could be a contributing factor in the failure to establish Tc-responsive cell lines. We here report that a change of the expression cassette to the human elongation factor-1alpha (EF-1alpha) promoter has permitted successful establishment of several inducible cell lines from diverse human tumor tissue origins. We interpret these results to imply that extinction of rtTA (or tTA) expression might be a significant factor in the lack of success in establishing Tc-inducible cell lines. Moreover, the present findings have general relevance to experiments requiring the use of stable cell lines.  相似文献   

20.
The major structural viral protein, VP1, of the human polyomavirus JC virus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), was expressed by using recombinant baculoviruses. Recombinant VP1 formed virus-like particles (VLP) with the typical morphology of empty JCV capsids. Purified VP1 VLP bind to SVG, B, and T cells, as well as to monkey kidney cells. After binding, VP1 VLP were also internalized with high efficiency and transported to the nucleus. Immunization studies revealed these particles as highly immunogenic when administered with adjuvant, while immunization without adjuvant induced no immune response. VP1 VLP hyperimmune serum inhibits binding to SVG cells and neutralizes natural JCV. Furthermore, the potential of VP1 VLP as an efficient transporter system for gene therapy was demonstrated. Exogenous DNA could be efficiently packaged into VP1 VLP, and the packaged DNA was transferred into COS-7 cells as shown by the expression of a marker gene. Thus, VP1 VLP are useful for PML vaccine development and represent a potential new transporter system for human gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号