首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To better predict the consequences of blocking signal transduction pathways as a means of controlling intestinal inflammation, we are characterizing the pathways up-regulated by IL-1 in intestinal epithelial cells (IEC). IL-1beta induced increased mRNA levels of MIP-2, MCP-1, RANTES, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2) in the IEC-18 cell line. IL-1beta activated NF-kappaB but not ERK or p38. Infecting cells with adenovirus expressing a mutated gene for IkappaBalpha (IkappaBAA) blocked IL-1-induced mRNA increases in MIP-2, MCP-1, and iNOS but not COX-2 or RANTES. Expression of IkappaBAA attenuated the IL-1-induced increase in COX-2 protein. Unexpectedly, RANTES mRNA increased, and protein was secreted by cells expressing IkappaBAA in the absence of IL-1. Adenovirus-expressing IkappaBAA, blocking protein synthesis, and IL-1beta all resulted in activation of JNK. The JNK inhibitor SP600125 prevented the RANTES increases by all three stimuli. A human enterocyte line was similarly examined, and both NF-kappaB and JNK regulate IL-1-induced RANTES secretion. We conclude that in IEC-18, IL-1beta-induced increases in mRNA for MIP-2, MCP-1, and iNOS are NF-kappaB-dependent, whereas regulation of RANTES mRNA is independent of NF-kappaB but is positively regulated by JNK. IL-1beta-induced mRNA increases in COX-2 mRNA are both NF-kappaB- and MAPK-independent but the translation of COX-2 protein is NF-kappaB-dependent. This pattern of signaling due to a single stimulus exposed the complexities of regulating inflammatory genes in IEC.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
It has been shown that ultrasound (US) stimulation accelerates fracture healing in the animal models and in clinical studies. Cyclooxygenase-2 (COX-2) is a crucial mediator in mechanically induced bone formation. AMP-activated protein kinase (AMPK) has reported to sense and regulate the cellular energy status in various cell types. Here we found that US-mediated COX-2 expression was attenuated by LKB1 and AMPKalpha1 small interference RNA (siRNA) in human osteoblasts. Pretreatment of osteoblasts with AMPK inhibitor (araA and compound C), p38 inhibitor (SB203580), NF-kappaB inhibitor (PDTC), IkappaB protease inhibitor (TPCK) and NF-kappaB inhibitor peptide also inhibited the potentiating action of US. US increased the kinase activity and phosphorylation of LKB1, AMPK and p38. Stimulation of osteoblasts with US activated IkappaB kinase alpha/beta (IKKalpha/beta), IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. US-mediated an increase of IKKalpha/beta activity, kappaB-luciferase activity and p65 and p50 binding to the NF-kappaB element was inhibited by araA, SB203580 and LKB1 siRNA. Our results suggest that US increased COX-2 expression in osteoblasts via the LKB1/AMPKalpha1/p38/IKKalphabeta and NF-kappaB signaling pathway.  相似文献   

15.
16.
Activation of activator protein-1 (AP-1) and increased expression of cyclooxygenase-2 (COX-2) have been clearly shown to play a functional role in UVB-induced skin tumor promotion. In this study, we examined UVB-induced signal transduction pathways in SKH-1 mouse epidermis leading to increases in COX-2 expression and AP-1 activity. We observed rapid increases in p38 mitogen-activated protein kinase (MAPK) signaling through activation of p38 MAPK and its downstream target, MAPK activated protein kinase-2. UVB also increased phosphatidylinositol 3-kinase (PI3K) signaling as observed through increases in AKT and GSK-3beta phosphorylation. Activation of the p38 MAPK and PI3K pathways results in the phosphorylation of cyclic AMP-responsive element binding protein, which was also observed in UVB-irradiated SKH-1 mice. Topical treatment with SB202190 (a specific inhibitor of p38 MAPK) or LY294002 (a specific inhibitor of PI3K) significantly decreased UVB-induced AP-1 activation by 84% and 68%, respectively, as well as COX-2 expression. Our data show that in mouse epidermis, UVB activation of the p38 MAPK and PI3K pathways leads to AP-1 activation and COX-2 expression.  相似文献   

17.
18.
19.
20.
The role of protein kinases p38 and CK2 (casein kinase II) in the response of RAW 264.7 macrophages to the lipopolysaccharide (LPS) from gram-negative bacteria was studied. Using specific p38 and CK2 inhibitors (p38 MAP kinase Inhibitor XI and casein kinase II Inhibitor III, respectively), we investigated the effects of these protein kinases on (i) LPS-induced activation of signaling pathways involving nuclear factor κB (NF-κB), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38, and interferon regulatory factor 3 (IRF3); (ii) expression of Toll-like receptor 4 (TLR4) and inducible heat-shock proteins HSP72 and HSP90; and (iii) production of interleukins IL-1α, IL-1β, IL-6, tumor necrosis factor α, and IL-10. Activation of the proapoptotic signaling in the macrophages was evaluated from the ratio between the active and inactive caspase-3 forms and p53 phosphorylation. Six hours after LPS addition (2.5 μg/ml) to RAW 264.7 cells, activation of the TLR4 signaling pathways was observed that was accompanied by a significant increase in phosphorylation of IκB kinase α/β, NF-κB (at both Ser536 and Ser276), p38, JNK, and IRF3. Other effects of macrophage incubation with LPS were an increase in the contents of TLR4, inducible heat-shock proteins (HSPs), and pro- and anti-inflammatory cytokines, as well as slight activation of the pro-apoptotic signaling in the cells. Using inhibitor analysis, we found that during the early response of macrophages to the LPS, both CK2 and p38 modulate activation of MAP kinase and NF-κB signaling pathways and p65 phosphorylation at Ser276/Ser536 and cause accumulation of HSP72, HSP90 and the LPS-recognizing receptor TLR4. Suppression of the p38 MAP kinase and CK2 activities by specific inhibitors (Inhibitor XI and Inhibitor III, respectively) resulted in the impairment of the macrophage effector function manifested as a decrease in the production of the early-response proinflammatory cytokines and disbalance between the pro- and anti-apoptotic signaling pathways leading presumably to apoptosis development. Taken together, our data indicate the inefficiency of therapeutic application of p38 and CK2 inhibitors during the early stages of inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号