首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein-tyrosine phosphatase (PTP) 1B has been implicated in negative regulation of insulin action, although little is known of the ability of insulin to regulate PTP1B itself. The ability of insulin to regulate phosphorylation and activation of PTP1B was probed in vivo. Challenge with insulin in vivo provoked a transient, sharp increase in the phosphotyrosine content of PTP1B in fat and skeletal muscle that peaked within 15 min. Insulin stimulated a decline of 60--70% in PTP1B activity. In mouse adipocytes, the inhibition of PTP1B activity and increased tyrosine phosphorylation of the enzyme were blocked by the insulin receptor tyrosine kinase inhibitor AG1024. Phosphoserine content of PTP1B declined in response to insulin stimulation. Elevation of intracellular cyclic AMP provokes a sharp increase in PTP1B activity and leads to increased phosphorylation of serine residues and decreased tyrosine phosphorylation. Suppression of cyclic AMP levels or inhibition of protein kinase A leads to a sharp decline in PTP1B activity, a decrease in phosphoserine content, and an increase in PTP1B phosphotyrosine content. PTP1B appears to be a critical point for insulin and catecholamine counter-regulation.  相似文献   

2.
Genetic disruption of protein-tyrosine phosphatase 1B (PTP1B) in mice leads to increased insulin sensitivity and resistance to weight gain. Although PTP1B has been implicated as a regulator of multiple signals, its function in other physiological responses in vivo is poorly understood. Here we demonstrate that PTP1B-null mice are resistant to Fas-induced liver damage and lethality, as evident by reduced hepatic apoptosis in PTP1B-null versus wild type mice and reduced levels of circulating liver enzymes. Activation of pro-apoptotic caspases-8, -9, -3, and -6 was attenuated in livers from PTP1B-null mice following Fas receptor stimulation, although components of the death-inducing signaling complex were intact. Activation of anti-apoptotic regulators, such as the hepatocyte growth factor/Met receptor tyrosine kinase, as well as Raf, ERK1/2, FLIP(L), and the NF-kappaB pathway, was elevated in response to Fas activation in livers from PTP1B-null mice. Using PTP1B-deficient primary hepatocytes, we show that resistance to Fas-mediated apoptosis is cell autonomous and that signals involving the Met, ERK1/2, and NF-kappaB pathways are required for cytoprotection. This study identifies a previously unknown physiological role for PTP1B in Fas-mediated liver damage and points to PTP1B as a potential therapeutic target against hepatotoxic agents.  相似文献   

3.
PTP-1B represents an attractive target for the treatment of type 2 diabetes and obesity. Given the role that protein phosphatases play in the regulation of many biologically relevant processes, inhibitors against PTP-1B must be not only potent, but also selective. It has been extremely difficult to synthesize inhibitors that are selective over the highly homologous TCPTP. We have successfully exploited the conservative Leu119 to Val substitution between the two enzymes to synthesize a PTP-1B inhibitor that is an order of magnitude more selective over TCPTP. Structural analyses of PTP-1B/inhibitor complexes show a conformation-assisted inhibition mechanism as the basis for selectivity. Such an inhibitory mechanism may be applicable to other homologous enzymes.  相似文献   

4.
Because of their antagonistic catalytic functions, protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases act together to control phosphotyrosine-mediated signaling processes in mammalian cells. However, unlike for protein-tyrosine kinases, little is known about the cellular substrate specificity of many PTPs because of the lack of appropriate methods for the systematic and detailed analysis of cellular PTP function. Even for the most intensely studied, prototypic family member PTP1B many of its physiological functions cannot be explained by its known substrates. To gain better insights into cellular PTP1B function, we used quantitative MS to monitor alterations in the global tyrosine phosphorylation of PTP1B-deficient mouse embryonic fibroblasts in comparison with their wild-type counterparts. In total, we quantified 124 proteins containing 301 phosphotyrosine sites under basal, epidermal growth factor-, or platelet-derived growth factor-stimulated conditions. A subset of 18 proteins was found to harbor hyperphosphorylated phosphotyrosine sites in knock-out cells and was functionally linked to PTP1B. Among these proteins, regulators of cell motility and adhesion are overrepresented, such as cortactin, lipoma-preferred partner, ZO-1, or p120ctn. In addition, regulators of proliferation like p62DOK or p120RasGAP also showed increased cellular tyrosine phosphorylation. Physical interactions of these proteins with PTP1B were further demonstrated by using phosphatase-inactive substrate-trapping mutants in a parallel MS-based analysis. Our results correlate well with the described phenotype of PTP1B-deficient fibroblasts that is characterized by an increase in motility and reduced cell proliferation. The presented study provides a broad overview about phosphotyrosine signaling processes in mouse fibroblasts and, supported by the identification of various new potential substrate proteins, indicates a central role of PTP1B within cellular signaling networks. Importantly the MS-based strategies described here are entirely generic and can be used to address the poorly understood aspects of cellular PTP function.  相似文献   

5.
Protein-tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling and a novel therapeutic target for the treatment of type 2 diabetes, obesity, and other associated metabolic syndromes. Because PTP1B regulates multiple signal pathways and it can both enhance and antagonize a cellular event, it is important to establish the physiological relevance of PTP1B in these processes. In this study, we utilize potent and selective PTP1B inhibitors to delineate the role of PTP1B in integrin signaling. We show that down-regulation of PTP1B activity with small molecule inhibitors suppresses cell spreading and migration to fibronectin, increases Tyr(527) phosphorylation in Src, and decreases phosphorylation of FAK, p130(Cas), and ERK1/2. In addition, PTP1B "substrate-trapping" mutants bind Tyr(527)-phosphorylated Src and protect it from dephosphorylation by endogenous PTP1B. These results establish that PTP1B promotes integrin-mediated responses in fibroblasts by dephosphorylating the inhibitory pTyr(527) and thereby activating the Src kinase. We also show that PTP1B forms a complex with Src and p130(Cas), and that the proline-rich motif PPRPPK (residues 309-314) in PTP1B is essential for the complex formation. We suggest that the specificity of PTP1B for Src pTyr(527) is mediated by protein-protein interactions involving the docking protein p130(Cas) with both Src and PTP1B in addition to the interactions between the PTP1B active site and the pTyr(527) motif.  相似文献   

6.
The non-receptor protein-tyrosine phosphatases (PTPs) 1B and T-cell phosphatase (TCPTP) have been implicated as negative regulators of multiple signaling pathways including receptor-tyrosine kinases. We have identified PTP1B and TCPTP as negative regulators of the hepatocyte growth factor receptor, the Met receptor-tyrosine kinase. In vivo, loss of PTP1B or TCPTP enhances hepatocyte growth factor-mediated phosphorylation of Met. Using substrate trapping mutants of PTP1B or TCPTP, we have demonstrated that both phosphatases interact with Met and that these interactions require phosphorylation of twin tyrosines (Tyr-1234/1235) in the activation loop of the Met kinase domain. Using confocal microscopy, we show that trapping mutants of both PTP1B and the endoplasmic reticulum-targeted TCPTP isoform, TC48, colocalize with Met and that activation of Met enables the nuclear-localized isoform of TCPTP, TC45, to exit the nucleus. Using small interfering RNA against PTP1B and TCPTP, we demonstrate that phosphorylation of Tyr-1234/1235 in the activation loop of the Met receptor is elevated in the absence of either PTP1B or TCPTP and further elevated upon loss of both phosphatases. This enhanced phosphorylation of Met corresponds to enhanced biological activity and cellular invasion. Our data demonstrate that PTP1B and TCPTP play distinct and non-redundant roles in the regulation of the Met receptor-tyrosine kinase.  相似文献   

7.
BackgroundElevated homocysteine is epidemiologically related to insulin resistance. Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling. However, the effect of homocysteine on PTP1B remains unclear.MethodsS-homocysteinylated PTP1B was identified by LC-ESI-MS/MS. The ability of thioredoxin system to recover active PTP1B from S-homocysteinylated PTP1B was confirmed by RNA interference. To address the mechanism for homocysteine to affect PTP1B activity, we performed 5-IAF insertion, activity assays, Western blotting, co-immunoprecipitation and glucose uptake experiments.ResultsThe thiol-containing form of homocysteine (HcySH) suppressed phosphorylation of insulin receptor-β subunit, but enhanced PTP1B activity. This phenomenon was partially related to the fact that HcySH promoted PTP1B expression. Although the disulfide-bonded form of homocysteine (HSSH) modified PTP1B to form an inactive S-homocysteinylated PTP1B, HcySH-induced increase in the activities of cellular thioredoxin and thioredoxin reductase, components of thioredoxin system, could recover active PTP1B from S-homocysteinylated PTP1B. Thioredoxin system transferred electrons from NADPH to S-homocysteinylated PTP1B, regenerating active PTP1B in vitro and in hepatocytes. The actions of HcySH were also related with decrease in hepatic glucose uptake.ConclusionsThe effect of HcySH/HSSH on PTP1B activity depends, at least partially, on the ratio of active PTP1B and S-homocysteinylated PTP1B. High HcySH-induced an increase in thioredoxin system activity is beneficial to de-S-homocysteinylation and is good for PTP1B activity.General significanceOur data provide a novel insight into post-translational regulation of PTP1B, and expand the biological functions of thioredoxin system.  相似文献   

8.
The ectoenzyme, gamma-glutamyl transpeptidase (GGT, EC ) cleaves glutathione (GSH) to facilitate the recapture of cysteine for synthesis of intracellular GSH. The impact of GGT expression on cell survival during oxidative stress was investigated using the human B cell lymphoblastoid cell line, Ramos. Ramos cells did not express surface GGT and exhibited no GGT enzyme activity. In contrast, Ramos cells stably transfected with the human GGT cDNA expressed high levels of surface GGT and enzymatic activity. GGT-transfected Ramos cells were protected from apoptosis when cultured in cyst(e)ine-deficient medium. The GGT-expressing cells also had lower levels of intracellular reactive oxygen species (ROS). Homocysteic acid and alanine, inhibitors of cystine and cysteine uptake, respectively, caused increased ROS content and diminished viability of GGT expressing cells. Exogenous GSH increased the viability of the GGT-transfected cells more effectively than that of control cells, whereas the products of GSH metabolism prevented death of both the control and GGT-transfected cells comparably. These data indicate that GGT cleavage of GSH and the subsequent recapture of cysteine and cystine allow cells to maintain low levels of cellular ROS and thereby avoid apoptosis induced by oxidative stress.  相似文献   

9.
Protein-tyrosine phosphatases (PTPs) are important for the control of proper cellular tyrosine phosphorylation. Despite the large number of PTPs encoded in the human genome and the emerging roles played by PTPs in human diseases, a detailed understanding of the role played by PTPs in normal physiology and in pathogenic conditions has been hampered by the absence of PTP-specific inhibitors. Such inhibitors could serve as useful tools for determining the physiological functions of PTPs and may constitute valuable therapeutics in the treatment of several human diseases. However, because of the highly conserved nature of the active site, it has been difficult to develop selective PTP inhibitors. By taking an approach to tether together two small ligands that can interact simultaneously with the active site and a unique proximal noncatalytic site, we have recently acquired Compound 2 (see Fig. 1), the most potent and selective PTP1B inhibitor identified to date, which exhibits several orders of magnitude selectivity in favor of PTP1B against a panel of PTPs. We describe an evaluation of the interaction between 2 and its analogs with PTP1B and its site-directed mutants selected based on hydrogen/deuterium exchange of PTP1B backbone amides in the presence and absence of 2. We have established the binding mode of Compound 2 and identified 12 PTP1B residues that are important for the potency and selectivity of Compound 2. Although many of the residues important for Compound 2 binding are not unique to PTP1B, the combinations of all contact residues differ between PTP isozymes, which suggest that the binding surface defined by these residues in individual PTPs determines inhibitor selectivity. Our results provide structural information toward understanding of the molecular basis for potent and selective PTP1B inhibition and further establish the feasibility of acquiring potent, yet highly selective, PTP inhibitory agents.  相似文献   

10.
Our structure-based drug discovery program within the field of protein-tyrosine phosphatases (PTPs) demands delivery of significant amounts of protein with extraordinary purity specifications over prolonged time periods. Hence, replacement of classical, multi-step, low-yield protein purifications with efficient affinity techniques would be desirable. For this purpose, the highly selective PTP1B inhibitor 2-(oxalyl-amino)-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine-3-carboxylic acid (OTP) was coupled to epoxy-activated Sepharose 6B (OTP Sepharose) and used for one-step affinity purification of tag-free PTP1B. The elution was performed with a combined pH and salt gradient. Importantly, since OTP Sepharose binds PTP1B with an intact active site only, the method ensures that the purified enzyme is fully active, a feature that might be particularly important in PTP research.  相似文献   

11.
Rho GTPases are signal transduction effectors that control cell motility, cell attachment, and cell shape by the control of actin polymerization and tyrosine phosphorylation. To identify cellular targets regulated by Rho GTPases, we screened global protein responses to Rac1, Cdc42, and RhoA activation by two-dimensional gel electrophoresis and mass spectrometry. A total of 22 targets were identified of which 19 had never been previously linked to Rho GTPase pathways, providing novel insight into pathway function. One novel target of RhoA was protein-tyrosine phosphatase 1B (PTP1B), which catalyzes dephosphorylation of key signaling molecules in response to activation of diverse pathways. Subsequent analysis demonstrated that RhoA enhances post-translational modification of PTP1B, inactivates phosphotyrosine phosphatase activity, and up-regulates tyrosine phosphorylation of p130Cas, a key mediator of focal adhesion turnover and cell migration. Thus, protein profiling reveals a novel role for PTP1B as a mediator of RhoA-dependent phosphorylation of p130Cas.  相似文献   

12.
Regions of protein-tyrosine phosphatase (PTP) 1B that are distant from the active site yet affect inhibitor binding were identified by a novel library screen. This screen was based on the observation that expression of v-Src in yeast leads to lethality, which can be rescued by the coexpression of PTP1B. However, this rescue is lost when yeast are grown in the presence of PTP1B inhibitors. To identify regions of PTP1B (amino acids 1-400, catalytic domain plus 80-amino acid C-terminal tail) that can affect the binding of the difluoromethyl phosphonate (DFMP) inhibitor 7-bromo-6-difluoromethylphosphonate 3-naphthalenenitrile, a library coexpressing PTP1B mutants and v-Src was generated, and the ability of yeast to grow in the presence of the inhibitor was evaluated. PTP1B inhibitor-resistant mutations were found to concentrate on helix alpha7 and its surrounding region, but not in the active site. No resistant amino acid substitutions were found to occur in the C-terminal tail, suggesting that this region has little effect on active-site inhibitor binding. An in-depth characterization of a resistant substitution localizing to region alpha7 (S295F) revealed that this change minimally affected enzyme catalytic activity, but significantly reduced the potency of a panel of structurally diverse DFMP PTP1B inhibitors. This loss of inhibitor potency was found to be due to the difluoro moiety of these inhibitors because only the difluoro inhibitors were shifted. For example, the inhibitor potency of a monofluorinated or non-fluorinated analog of one of these DFMP inhibitors was only minimally affected. Using this type of library screen, which can scan the nearly full-length PTP1B sequence (catalytic domain and C-terminal tail) for effects on inhibitor binding, we have been able to identify novel regions of PTP1B that specifically affect the binding of DFMP inhibitors.  相似文献   

13.
14.
Obesity and type 2 diabetes are characterized by insulin resistance. Mice lacking the protein-tyrosine phosphatase PTP1B in all tissues are hypersensitive to insulin but also have diminished fat stores. Because adiposity affects insulin sensitivity, the extent to which PTP1B directly regulates glucose homeostasis has been unclear. We report that mice lacking PTP1B only in muscle have body weight and adiposity comparable to those of controls on either chow or a high-fat diet (HFD). Muscle triglycerides and serum adipokines are also affected similarly by HFD in both groups. Nevertheless, muscle-specific PTP1B(-/-) mice exhibit increased muscle glucose uptake, improved systemic insulin sensitivity, and enhanced glucose tolerance. These findings correlate with and are most likely caused by increased phosphorylation of the insulin receptor and its downstream signaling components. Thus, muscle PTP1B plays a major role in regulating insulin action and glucose homeostasis, independent of adiposity. In addition, rosiglitazone treatment of HFD-fed control and muscle-specific PTP1B(-/-) mice revealed that rosiglitazone acts additively with PTP1B deletion. Therefore, combining PTP1B inhibition with thiazolidinediones should be more effective than either alone for treating insulin-resistant states.  相似文献   

15.
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized at the molecular level by the expression of Bcr-Abl, a chimeric protein with deregulated tyrosine kinase activity. The protein-tyrosine phosphatase 1B (PTP1B) is up-regulated in Bcr-Abl-expressing cells, suggesting a regulatory link between the two proteins. To investigate the interplay between these two proteins, we inhibited the activity of PTP1B in Bcr-Abl-expressing TonB.210 cells by either pharmacological or siRNA means and examined the effects of such inhibition on Bcr-Abl expression and function. Herein we describe a novel mechanism by which the phosphatase activity of PTP1B is required for Bcr-Abl protein stability. Inhibition of PTP1B elicits tyrosine phosphorylation of Bcr-Abl that triggers the degradation of Bcr-Abl through ubiquitination via the lysosomal pathway. The degradation of Bcr-Abl consequently inhibits tyrosine phosphorylation of Bcr-Abl substrates and the downstream production of intracellular reactive oxygen species. Furthermore, PTP1B inhibition reduces cell viability and the IC(50) of the Bcr-Abl inhibitor imatinib mesylate. Degradation of Bcr-Abl via PTP1B inhibition is also observed in human CML cell lines K562 and LAMA-84. These results suggest that inhibition of PTP1B may be a useful strategy to explore in the development of novel therapeutic agents for the treatment of CML, particularly because host drugs currently used in CML such as imatinib focus on inhibiting the kinase activity of Bcr-Abl.  相似文献   

16.
Structural analyses of the protein-tyrosine phosphatase 1B (PTP1B) active site and inhibitor complexes have aided in optimization of a peptide inhibitor containing the novel (S)-isothiazolidinone (IZD) phosphonate mimetic. Potency and permeability were simultaneously improved by replacing the polar peptidic backbone of the inhibitor with nonpeptidic moieties. The C-terminal primary amide was replaced with a benzimidazole ring, which hydrogen bonds to the carboxylate of Asp(48), and the N terminus of the peptide was replaced with an aryl sulfonamide, which hydrogen bonds to Asp(48) and the backbone NH of Arg(47) via a water molecule. Although both substituents retain the favorable hydrogen bonding network of the peptide scaffold, their aryl rings interact weakly with the protein. The aryl ring of benzimidazole is partially solvent exposed and only participates in van der Waals interactions with Phe(182) of the flap. The aryl ring of aryl sulfonamide adopts an unexpected conformation and only participates in intramolecular pi-stacking interactions with the benzimidazole ring. These results explain the flat SAR for substitutions on both rings and the reason why unsubstituted moieties were selected as candidates. Finally, substituents ortho to the IZD heterocycle on the aryl ring of the IZD-phenyl moiety bind in a small narrow site adjacent to the primary phosphate binding pocket. The crystal structure of an o-chloro derivative reveals that chlorine interacts extensively with residues in the small site. The structural insights that have led to the discovery of potent benzimidazole aryl sulfonamide o-substituted derivatives are discussed in detail.  相似文献   

17.
microRNAs are an emerging class of molecules that regulate pathogenesis of cardiovascular diseases. Here we aim to elucidate the effects and mechanism of miR-135a, a previously reported regulator of ischemia-reperfusion (I/R) injury, in myocardial I/R injury. Quantitative real-time polymerase chain reaction analysis revealed that the expression level of miR-135a was significantly decreased both in the rat I/R group and H9c2 cells subjected to hypoxia/reoxygenation. Overexpression of miR-135a in vivo markedly decreased the infarct size and inhibited the I/R-induced cardiomyocyte apoptosis. Overexpression of miR-135a in H9c2 also exerted antiapoptosis effects. Furthermore, bioinformatics analysis, luciferase activity, and the Western blot assay indicated that protein tyrosine phosphatase 1B (PTP1B) is a direct target of miR-135a. In addition, the expression of proapoptotic-related genes, such as p53, Bax, and cleaved caspase3, were decreased in association with the downregulation of PTP1B. In summary, this study demonstrates that miR-135a exerts protective effects against myocardial I/R injury by targeting PTP1B.  相似文献   

18.
SHP-1 is a cytosolic protein-tyrosine phosphatase that behaves as a negative regulator in eukaryotic cellular signaling pathways. To understand its regulatory mechanism, we have determined the crystal structure of the C-terminal truncated human SHP-1 in the inactive conformation at 2.8-A resolution and refined the structure to a crystallographic R-factor of 24.0%. The three-dimensional structure shows that the ligand-free SHP-1 has an auto-inhibited conformation. Its N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, which supports that the phosphatase activity of SHP-1 is primarily regulated by the N-SH2 domain. In addition, the C-SH2 domain of SHP-1 has a different orientation from and is more flexible than that of SHP-2, which enables us to propose an enzymatic activation mechanism in which the C-SH2 domains of SHPs could be involved in searching for phosphotyrosine activators.  相似文献   

19.
The binding of several phosphonodifluoromethyl phenylalanine (F(2)Pmp)-containing peptides to protein-tyrosine phosphatase 1B (PTP1B) and its substrate-trapping mutants (C215S and D181A) has been studied using isothermal titration calorimetry. The binding of a high affinity ligand, Ac-Asp-Ala-Asp-Glu-F(2)Pmp-Leu-NH(2), to PTP1B (K(d) = 0.24 microm) is favored by both enthalpic and entropic contributions. Disruption of ionic interactions between the side chain of Arg-47 and the N-terminal acidic residues reduces the binding affinity primarily through the reduction of the TDeltaS term. The role of Arg-47 may be to maximize surface contact between PTP1B and the peptide, which contributes to high affinity binding. The active site Cys-215 --> Ser mutant PTP1B binds ligands with the same affinity as the wild-type enzyme. However, unlike wild-type PTP1B, peptide binding to C215S is predominantly driven by enthalpy change, which likely results from the elimination of the electrostatic repulsion between the thiolate anion and the phosphonate group. The increased enthalpic contribution is offset by reduction in the binding entropy, which may be the result of increased entropy of the unbound protein caused by this mutation. The general acid-deficient mutant D181A binds the peptide 5-fold tighter than the C215S mutant, consistent with the observation that the Asp to Ala mutant is a better "substrate-trapping" reagent than C215S. The increased binding affinity for D181A as compared with the wild-type PTP1B results primarily from an increase in the DeltaH of binding in the mutant, which may be related to decreased electrostatic repulsion between the phosphate moiety and PTP1B. These results have important implications for the design of high affinity PTP1B inhibitors.  相似文献   

20.
Crystal structures of protein-tyrosine phosphatase 1B in complex with compounds bearing a novel isothiazolidinone (IZD) heterocyclic phosphonate mimetic reveal that the heterocycle is highly complementary to the catalytic pocket of the protein. The heterocycle participates in an extensive network of hydrogen bonds with the backbone of the phosphate-binding loop, Phe(182) of the flap, and the side chain of Arg(221). When substituted with a phenol, the small inhibitor induces the closed conformation of the protein and displaces all waters in the catalytic pocket. Saturated IZD-containing peptides are more potent inhibitors than unsaturated analogs because the IZD heterocycle and phenyl ring directly attached to it bind in a nearly orthogonal orientation with respect to each other, a conformation that is close to the energy minimum of the saturated IZD-phenyl moiety. These results explain why the heterocycle is a potent phosphonate mimetic and an ideal starting point for designing small nonpeptidic inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号