首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plague is caused by Yersinia pestis, which evolved from the enteric pathogen Y. pseudotuberculosis, which normally causes a chronic and relatively mild disease. Y. pestis is not only able to parasitize the flea but also highly virulent to rodents and humans, causing epidemics of a systemic and often fatal disease. Y. pestis could be used as a bio-weapon and for bio-terrorism. It uses a number of strategies that allow the pathogen to change its lifestyle rapidly to survive in fleas and to grow in the mammalian hosts. Extensive studies reviewed here give an overall picture of the determinants responsible for plague pathogenesis in mammalians and the transmission by fleas. The availability of multiple genomic sequences and more extensive use of genomics and proteomics technologies should allow a comprehensive dissection of the complex of host-adaptation and virulence in Y. pestis.  相似文献   

2.
New insights into the history of rice domestication   总被引:6,自引:0,他引:6  
The history of rice domestication has long been a subject of debate. Recently obtained genetic evidence provides new insights into this complex story. Genome-wide studies of variation demonstrate that the two varietal groups in Oryza sativa (indica and japonica) arose from genetically distinct gene pools within a common wild ancestor, Oryza rufipogon, suggesting multiple domestications of O. sativa. However, the evolutionary history of recently cloned domestication genes adds another layer of complexity to the domestication of rice. Although some alleles exist only within specific subpopulations, as would be expected if the domestications occurred independently, other major domestication alleles are common to all cultivated O. sativa varieties. Our current view of rice domestication supports multiple domestications coupled with limited introgression that transferred key domestication alleles between divergent rice gene pools.  相似文献   

3.
Although the common descent of all life has been widely accepted since Darwin's time, new research occasionally provides us with arresting reminders of the unity of evolutionary history. Recent papers by Arendt et al. and Panda et al. provide one such reminder. They illustrate that the two classes of animal photoreceptors, ciliary and rhabdomeric photoreceptors, are likely to share an ancient common ancestor and have been evolving in parallel since their duplication over 600 million years ago.  相似文献   

4.
Molecular insights into the antifungal mechanism of bacilysin   总被引:1,自引:0,他引:1  
Bacilysin is one of the simplest antimicrobial peptides and has drawn great attention for its excellent performance against Candida albicans. In this study, the antifungal mechanism of bacilysin was investigated. The target enzyme glucosamine-6-phosphate synthase (GFA) was expressed heterologously in Escherichia coli and its inhibition by bacilysin and derivatives was studied. It was concluded that bacilysin could be hydrolyzed by a proteinase of C. albicans, and that the released product, anticapsin, then inhibited the aminotransferase activity of GFA. This result was verified by molecular simulation, and the interaction mode of anticapsin with GFA was detailed, which provides data for the development of novel antifungal drugs. Transport of bacilysin into fungal cells was also simulated and it was shown that bacilysin is more readily transported into cells than anticapsin. Thus, our findings support a mechanism whereby bacilysin is transported into fungal pathogens, hydrolyzed to anticapsin, which then inhibits GFA.  相似文献   

5.
Molecular insights into the causes of male infertility   总被引:6,自引:0,他引:6  
Infertility is a reproductive health problem that affects many couples in the human population. About 13–18% of couple suffers from it and approximately one-half of all cases can be traced to either partner. Regardless of whether it is primary or secondary infertility, affected couples suffer from enormous emotional and psychological trauma and it can constitute a major life crisis in the social context. Many cases of idiopathic infertility have a genetic or molecular basis. The knowledge of the molecular genetics of male infertility is developing rapidly, new “spermatogenic genes” are being discovered and molecular diagnostic approaches (DNA chips) established. This will immensely help diagnostic and therapeutic approaches to alleviate human infertility. The present review provides an overview of the causes of human infertility, particularly the molecular basis of male infertility and its implications for clinical practice.  相似文献   

6.
The domestication and improvement of crop plants have long fascinated evolutionary biologists, geneticists, and anthropologists. In recent years, the development of increasingly powerful molecular and statistical tools has reinvigorated this now fast-paced field of research. In this paper, we provide an overview of how such tools have been applied to the study of crop evolution. We also highlight lessons that have been learned in light of a few long-standing and interrelated hypotheses concerning the origins of crop plants and the nature of the genetic changes underlying their evolution. We conclude by discussing compelling evolutionary genomic approaches that make possible the efficient and unbiased identification of genes controlling crop-related traits and provide further insight into the actual timing of selection on particular genomic regions.  相似文献   

7.
8.
Molecular insights into eukaryotic chemotaxis.   总被引:2,自引:0,他引:2  
Many cells display directed migration toward specific compounds. The best-studied eukaryotic models of chemotaxis are polymorphonuclear leukocytes, which respond to formylated peptides and Dictyostelium amoebas, which respond to extracellular cAMP. In both cell types, chemoattractants bind to surface receptors that contain seven transmembrane domains and interact with G proteins. Some cells, such as fibroblasts, undergo chemotaxis toward compounds whose receptors lack this motif and transmit their signals by other mechanisms. The cytosolic changes elicited by chemoattractants include increased levels of cAMP, cGMP, inositol phosphates, and calcium. These changes are correlated with actin polymerization and other cytoskeletal events that result in preferential extension of pseudopods toward the chemoattractant. Dictyostelium cell lines in which specific genes have been disrupted have demonstrated the necessity of a cAMP receptor (cAR1) and a G protein alpha-subunit (G alpha 2) for responsiveness to cAMP. Other proteins, such as myosin heavy chain and several actin binding proteins, are dispensible although their absence does affect the details of chemotaxis. The disruption of other relevant genes and the genetic reconstitution of chemotaxis in cells lacking crucial proteins should reveal many clues about this complicated and fascinating process.  相似文献   

9.
10.
Most studies of brachiopod evolution have been based on their extensive fossil record, but molecular techniques, due to their independence from the rock record, can offer new insights into the evolution of a clade. Previous molecular phylogenetic hypotheses of brachiopod interrelationships place phoronids within the brachiopods as the sister group to the inarticulates, whereas morphological considerations suggest that Brachiopoda is a monophyletic group. Here, these hypotheses were tested with a molecular phylogenetic analysis of seven nuclear housekeeping genes combined with three ribosomal genes. The combined analysis finds brachiopods to be monophyletic, but with relatively weak support, and the craniid as the sister taxon of all other brachiopods. Phylogenetic-signal dissection suggests that the weak support is caused by the instability of the craniid, which is attracted to the phoronids. Analysis of slowly evolving sites results in a robustly supported monophyletic Brachiopoda and Inarticulata (Linguliformea+Craniiformea), which is regarded as the most likely topology for brachiopod interrelationships. The monophyly of Brachiopoda was further tested with microRNA-based phylogenetics, which are small, noncoding RNA genes whose presence and absence can be used to infer phylogenetic relationships. Two novel microRNAs were characterized supporting the monophyly of brachiopods. Congruence of the traditional molecular phylogenetic analysis, microRNAs, and morphological cladograms suggest that Brachiopoda is monophyletic with Phoronida as its likely sister group. Molecular clock analysis suggests that extant phoronids have a Paleozoic divergence despite their conservative morphology, and that the early brachiopod fossil record is robust, and is not affected by taphonomic factors relating to the late-Precambrian/early-Cambrian phosphogenic event.  相似文献   

11.
12.
《遗传学报》2022,49(2):89-95
There is accumulating evidence to show that environmental stressors can regulate a variety of phenotypes in descendants through germline-mediated epigenetic inheritance. Studies of model organisms exposed to environmental cues (e.g., diet, heat stress, toxins) indicate that altered DNA methylations, histone modifications, or non-coding RNAs in the germ cells are responsible for the transgenerational effects. In addition, it has also become evident that maternal provision could provide a mechanism for the transgenerational inheritance of stress adaptations that result from ancestral environmental cues. However, how the signal of environmentally-induced stress response transmits from the soma to the germline, which may influence offspring fitness, remains largely elusive. Small RNAs could serve as signaling molecules that transmit between tissues and even across generations. Furthermore, a recent study revealed that neuronal mitochondrial perturbations induce a transgenerational induction of the mitochondrial unfolded protein response mediated by a Wnt-dependent increase in mitochondrial DNA levels. Here, we review recent work on the molecular mechanism by which parental experience can affect future generations and the importance of soma-to-germline signaling for transgenerational inheritance.  相似文献   

13.
Abstract

A large number of rice agronomic traits are complex, multi factorial and polygenic. As the mechanisms and genes determining grain size and yield are largely unknown, the identification of regulatory genes related to grain development remains a preeminent approach in rice genetic studies and breeding programs. Genes regulating cell proliferation and expansion in spikelet hulls and participating in endosperm development are the main controllers of rice kernel elongation and grain size. We review here and discuss recent findings on genes controlling rice grain size and the mechanisms, epialleles, epigenomic variation, and assessment of controlling genes using genome-editing tools relating to kernel elongation.  相似文献   

14.
15.
S-adenosylmethionine (SAM) riboswitches are widespread in bacteria, and up to five different SAM riboswitch families have been reported, highlighting the relevance of SAM regulation. On the basis of crystallographic and biochemical data, it has been postulated, but never demonstrated, that ligand recognition by SAM riboswitches involves key conformational changes in the RNA architecture. We show here that the aptamer follows a two-step hierarchical folding selectively induced by metal ions and ligand binding, each of them leading to the formation of one of the two helical stacks observed in the crystal structure. Moreover, we find that the anti-antiterminator P1 stem is rotated along its helical axis upon ligand binding, a mechanistic feature that could be common to other riboswitches. We also show that the nonconserved P4 helical domain is used as an auxiliary element to enhance the ligand-binding affinity. This work provides the first comprehensive characterization, to our knowledge, of a ligand-controlled riboswitch folding pathway.  相似文献   

16.
Coenzyme F(420), a hydride carrier, is found in Archaea and some bacteria and has crucial roles in methanogenesis, antibiotic biosynthesis, DNA repair, and activation of antitubercular compounds. CofD, 2-phospho-l-lactate transferase, catalyzes the last step in the biosynthesis of F(420)-0 (F(420) without polyglutamate), by transferring the lactyl phosphate moiety of lactyl(2)diphospho-(5')guanosine to 7,8-didemethyl-8-hydroxy-5-deazariboflavin ribitol (Fo). CofD is highly conserved among F(420)-producing organisms, and weak sequence homologs are also found in non-F(420)-producing organisms. This superfamily does not share any recognizable sequence conservation with other proteins. Here we report the first crystal structures of CofD, the free enzyme and two ternary complexes, with Fo and P(i) or with Fo and GDP, from Methanosarcina mazei. The active site is located at the C-terminal end of a Rossmann fold core, and three large insertions make significant contributions to the active site and dimer formation. The observed binding modes of Fo and GDP can explain known biochemical properties of CofD and are also supported by our binding assays. The structures provide significant molecular insights into the biosynthesis of the F(420) coenzyme. Large structural differences in the active site region of the non-F(420)-producing CofD homologs suggest that they catalyze a different biochemical reaction.  相似文献   

17.
18.
19.
20.
Sickle cell disease is caused by the amino acid substitution of glutamic acid to valine, which leads to the polymerization of deoxygenated sickle hemoglobin (HbS) into long strands. These strands are responsible for the sickling of red blood cells (RBCs), making blood hyper-coagulable leading to an increased chance of vaso-occlusive crisis. The conformational changes in sickled RBCs traveling through narrow blood vessels in a highly viscous fluid are critical in understanding; however, there are few studies that investigate the origins of the molecular mechanical behavior of sickled RBCs. In this work, we investigate the molecular mechanical properties of HbS molecules. A mechanical model was used to estimate the directional stiffness of an HbS molecule and the results were compared to adult human hemoglobin (HbA). The comparison shows a significant difference in strength between HbS and HbA, as well as anisotropic behavior of the hemoglobin molecules. The results also indicated that the HbS molecule experienced more irreversible mechanical behavior than HbA under compression. Further, we have characterized the elastic and compressive properties of a double stranded sickle fiber using six HbS molecules, and it shows that the HbS molecules are bound to each other through strong inter-molecular forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号