首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Phosphorylation of neurotransmitter receptors can modify their activity and regulate neuronal excitability. Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase involved not only in neuronal development, but also in synaptic function and plasticity. Here we demonstrate that group I metabotropic glutamate receptors (mGluRs), which modulate post-synaptic signaling by coupling to intracellular signal transduction pathways, are phosphorylated by cdk5. In vitro kinase assays reveal that cdk5 phosphorylates mGluR5 within the domain of the receptor that interacts with the scaffolding protein homer. Using a novel phosphospecific mGluR antibody, we show that the homer-binding domain of both mGluR1 and mGluR5 are phosphorylated in vivo , and that inhibition of cdk5 with siRNA decreases the amount of phosphorylated receptor. Furthermore, kinetic binding analysis, by surface plasmon resonance, indicates that phosphorylation of mGluR5 enhances its association with homer. Homer protein complexes in the post-synaptic density, and their disruption by an activity-dependent short homer 1a isoform, have been shown to regulate the trafficking and signaling of the mGluRs and impact many neuroadaptive processes. Phosphorylation of the mGluR homer-binding domain, in contrast to homer 1a induction, provides a novel mechanism for potentially regulating a subset of homer interactions.  相似文献   

2.
The metabotropic glutamate receptor 5 (mGluR5) exhibits a rapid loss of receptor responsiveness to prolonged or repeated agonist exposure. This receptor desensitization has been seen in a variety of native and recombinant systems, and is thought to result from receptor-mediated, protein kinase C (PKC)-dependent phosphorylation of the receptor, uncoupling it from the G protein in a negative feedback regulation. We have investigated the rapid PKC-mediated desensitization of mGluR5 in cortical cultured astrocytes by measuring downstream signals from activation of mGluR5. These include activation of phosphoinositide (PI) hydrolysis, intracellular calcium transients, and extracellular signal-regulated kinase 2 (ERK2) phosphorylation. We present evidence that PKC plays an important role in rapid desensitization of PI hydrolysis and calcium signaling, but not in ERK2 phosphorylation. This differential regulation of mGluR5-mediated responses suggests divergent signaling and regulatory pathways which may be important mechanisms for dynamic integration of signal cascades.  相似文献   

3.
4.
Activation of glycogen synthase kinase 3beta (Gsk3beta) has been shown to be a key component in signaling pathways that underlie neurodegeneration and neurodegenerative disease. Conversely, inactivation of Gsk3beta by phosphoinositide 3-kinase (PI3K)/Akt is an important neuroprotective mechanism. Previous studies have shown that agonist activation of group I metabotropic glutamate receptors (mGluRs) can increase neuronal survival and prevent apoptosis. However, little is known about the signaling pathways that couple mGluR5 to neuroprotection. In this report, we investigated whether activation of the PI3K/Akt/Gsk3beta pathway, which has been shown to have an important neuroprotective mechanism, is required for mGluR5 activation mediated neuroprotection against beta-amyloid. We found that brief incubations of mouse hippocampal slices with (R,S)-3,5-dihydroxyphenylglycine (DHPG) resulted in increased phosphorylation of Akt and Gsk3beta. The PI3K inhibitors, LY294002 and wortmannin, blocked the DHPG-induced increased phosphorylation of Akt and Gsk3beta. Similar results were observed in rat primary hippocampal cultures. Finally, we found that the PI3K inhibitor LY294002 can block (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) mediated neuroprotection against beta-amyloid. Thus, these findings suggest that mGluR5 can modulate the PI3K/Akt/Gsk3beta pathway in the hippocampus, and that modulation of this signaling pathway can reverse beta-amyloid-induced neuronal toxicity.  相似文献   

5.
Metabotropic glutamate (mGlu) receptors mediate in part the CNS effects of glutamate. These receptors interact with a large array of intracellular proteins in which the final role is to regulate receptor function. Here, using co-immunoprecipitation and pull-down experiments we showed a close and specific interaction between mGlu5 receptor and NECAB2 in both transfected human embryonic kidney cells and rat hippocampus. Interestingly, in pull-down experiments increasing concentrations of calcium drastically reduced the ability of these two proteins to interact, suggesting that NECAB2 binds to mGlu5 receptor in a calcium-regulated manner. Immunoelectron microscopy detection of NECAB2 and mGlu5 receptor in the rat hippocampal formation indicated that both proteins are codistributed in the same subcellular compartment of pyramidal cells. In addition, the NECAB2/mGlu5 receptor interaction regulated mGlu5b-mediated activation of both inositol phosphate accumulation and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Overall, these findings indicate that NECAB2 by its physical interaction with mGlu5b receptor modulates receptor function.  相似文献   

6.
We recently showed that prolonged activation of metabotropic glutamate receptor 7 (mGlu7) potentiates glutamate release. This signalling involves phospholipase C activation via a pertussis toxin insensitive G protein and the subsequent hydrolysis of phosphatidylinositol (4,5)-bisphosphate. Release potentiation is independent of protein kinase C activation but it is dependent on the downstream release machinery, as reflected by the concomitant translocation of active zone Munc13-1 protein from the soluble to particulate fractions. Here we show that phorbol ester and mGlu7 receptor-dependent facilitation of neurotransmitter release is not additive, suggesting they share a common signalling mechanism. However, release potentiation is restricted to release sites that express N-type Ca(2+) channels, because phorbol ester and mGlu7 receptor-mediated release potentiation are absent in nerve terminals from mice lacking N-type Ca(2+) channels. In addition, phorbol esters but not mGlu7 receptors potentiate release at nerve terminals with P/Q-type Ca(2+) channels, although only under restricted conditions of Ca(2+) influx. The differential effect of phorbol esters at nerve terminals with either N- or P/Q-type Ca(2+) channels seems to be unrelated to the type Munc13 isoform expressed, and it is more likely dependent on other properties of the release machinery.  相似文献   

7.
Hyperphosphorylation of neurofilament and tau, and formation of cytoskeletal lesions, are notable features of several human neurodegenerative diseases, including Niemann-Pick Disease Type C (NPC). Previous studies suggested that the MAPKs, extracellular signal regulated kinase 1 and 2 (ERK1/2) may play a significant role in this aspect of NPC. To test this idea, we treated npc mice with PD98059, a specific and potent inhibitor of MAPK activation. Although activity of ERK1/2 was inhibited by 40%, a 2-week intracerebroventricular infusion of PD98059 just prior to onset of cytoskeletal pathology and symptoms in npc mice did not delay or inhibit prominent hallmarks of NPC. Unexpectedly, ERK1/2 inhibition led to aggravation of tau hyperphosphorylation, particularly in oligodendroctyes, in a manner similar to that of certain human tauopathies. Our results suggest that ERK1/2 does not play a major role in NPC neuropathology, and therefore, that MAPK inhibition is unlikely to be a useful strategy for managing the disease.  相似文献   

8.
Studies have suggested that the expression, translocation, and function of alpha4beta2 nicotinic receptors may be modulated by alpha4 subunit phosphorylation, but little direct evidence exists to support this idea. The objective of these experiments was to identify specific serine/threonine residues on alpha4 subunits that are phosphorylated in vivo by cAMP-dependent protein kinase and protein kinase C (PKC). To accomplish this, DNAs coding for human alpha4 subunits containing alanines in place of serines/threonines predicted to represent phosphorylation sites were constructed, and transiently transfected with the DNA coding for wild-type beta2 subunits into SH-EP1 cells. Cells were pre-incubated with (32)Pi and incubated in the absence or presence of forskolin or phorbol 12,13-dibutyrate. Immunoprecipitated alpha4 subunits were subjected to immunoblot, autoradiographic and phosphoamino acid analyses, and two-dimensional phosphopeptide mapping. Results confirmed the presence of two alpha4 protein bands, a major band of 71/75 kDa and a minor band of 80/85 kDa. Phosphoamino acid analysis of the major band indicated that only serine residues were phosphorylated. Phosphopeptide maps demonstrated that Ser362 and 467 on the M3/M4 cytoplasmic domain of the alpha4 subunit represent major cAMP-dependent protein kinase phosphorylation sites, while Ser550 also contained within this major intracellular loop is a major site for protein kinase C phosphorylation.  相似文献   

9.
The gene encoding leucine‐rich repeat kinase 2 (LRRK2) comprises a major risk factor for Parkinson's disease. Recently, it has emerged that LRRK2 plays important roles in the immune system. LRRK2 is induced by interferon‐γ (IFN‐γ) in monocytes, but the signaling pathway is not known. Here, we show that IFN‐γ‐mediated induction of LRRK2 was suppressed by pharmacological inhibition and RNA interference of the extracellular signal‐regulated kinase 5 (ERK5). This was confirmed by LRRK2 immunostaining, which also revealed that the morphological responses to IFN‐γ were suppressed by ERK5 inhibitor treatment. Both human acute monocytic leukemia THP‐1 cells and human peripheral blood monocytes stimulated the ERK5‐LRRK2 pathway after differentiation into macrophages. Thus, LRRK2 is induced via a novel, ERK5‐dependent IFN‐γ signal transduction pathway, pointing to new functions of ERK5 and LRRK2 in human macrophages.

  相似文献   


10.
Background information. In endocrine cells, IP3R (inositol 1,4,5‐trisphosphate receptor), a ligand‐gated Ca2+ channel, plays an important role in the control of intracellular Ca2+ concentration. There are three subtypes of IP3R that are distributed differentially among cell types. RINm5F cells express almost exclusively the IP3R‐3 subtype. The purpose of the present study was to investigate the effect of PKA (protein kinase A) on the activity of IP3R‐3 in RINm5F cells. Results. We show that immunoprecipitated IP3R‐3 is a good substrate for PKA. Using a back‐phosphorylation approach, we show that endogenous PKA phosphorylates IP3R‐3 in intact RINm5F cells. [3H]IP3 (inositol 1,4,5‐trisphosphate) binding affinity and IP3‐induced Ca2+ release activity were enhanced in permeabilized cells that were pre‐treated with forskolin or PKA. The PKA‐induced enhancement of IP3R‐3 activity was also observed in intact RINm5F cells stimulated with carbachol and epidermal growth factor, two agonists that use different receptor types to activate phospholipase C. Conclusion. The results of the present study reveal a converging step where the cAMP and the Ca2+ signalling systems act co‐operatively in endocrine cell responses to external stimuli.  相似文献   

11.
12.
Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.  相似文献   

13.
We explored the interplay between the intracellular energy sensor AMP‐activated protein kinase (AMPK), extracellular signal‐regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)‐induced neuronal differentiation of SH‐SY5Y human neuroblastoma cells. PMA‐triggered expression of neuronal markers (dopamine transporter, microtubule‐associated protein 2, β‐tubulin) was associated with an autophagic response, measured by the conversion of microtubule‐associated protein light chain 3 (LC3)‐I to autophagosome‐bound LC3‐II, increase in autophagic flux, and expression of autophagy‐related (Atg) proteins Atg7 and beclin‐1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference‐mediated silencing of AMPK suppressed PMA‐induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA‐induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA‐induced differentiation of SH‐SY5Y cells. Therefore, PMA‐induced neuronal differentiation of SH‐SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response.

  相似文献   


14.
A series of 3-(pyridin-2-yl-ethynyl)benzamide negative allosteric modulators of the metabotropic glutamate receptor 5 (mGluR5 NAMs) have been prepared. Starting from HTS hit 1 (IC50: 926 nM), potent mGluR5 NAMs showing excellent potencies (IC50s <50 nM) and good physicochemical profiles were prepared by monitoring LipE values. One compound 26 showed excellent mGluR5 binding (Ki: 21 nM) and antagonism (IC50: 8 nM), an excellent rat PK profile (CL: 12 mL/min/kg, %F: 85) and showed oral activity in a mouse 4-Plate Behavioral model of anxiety (MED: 30 mpk) and a mouse Stress Induced Hyperthermia model of anxiety (MED 17.8 mpk).  相似文献   

15.
16.
The strength and duration of extracellular dopamine concentrations are regulated by the presynaptic dopamine transporter (DAT) and dopamine D2 autoreceptors (D2autoRs). There is a functional interaction between these two proteins. Activation of D2autoRs increases DAT trafficking to the surface whereas disruption of this interaction compromises activities of both proteins and alters dopaminergic transmission. Previously we reported that DAT expression and activity are subject to modulation by protein kinase Cβ (PKCβ). Here, we further demonstrate that PKCβ is integral for the interaction between DAT and D2autoR. Inhibition or absence of PKCβ abolished the communication between DAT and D2autoR. In mouse striatal synaptosomes and transfected N2A cells, the D2autoR‐stimulated membrane insertion of DAT was abolished by PKCβ inhibition. Moreover, D2autoR‐stimulated DAT trafficking is mediated by a PKCβ‐extracellular signal‐regulated kinase signaling cascade where PKCβ is upstream of extracellular signal‐regulated kinase. The increased surface DAT expression upon D2autoR activation resulted from enhanced DAT recycling as opposed to reduced internalization. Further, PKCβ promoted accelerated DAT recycling. Our study demonstrates that PKCβ critically regulates D2autoR‐activated DAT trafficking and dopaminergic signaling. PKCβ is a potential drug target for correcting abnormal extracellular dopamine levels in diseases such as drug addiction and schizophrenia.  相似文献   

17.
Incubation of permeabilized cells with mitotic extracts results in extensive fragmentation of the pericentriolarly organized stacks of cisternae. The fragmented Golgi membranes are subsequently dispersed from the pericentriolar region. We have shown previously that this process requires the cytosolic protein mitogen-activated protein kinase kinase 1 (MEK1). Extracellular signal-regulated kinase (ERK) 1 and ERK2, the known downstream targets of MEK1, are not required for this fragmentation (Acharya et al. 1998). We now provide evidence that MEK1 is specifically phosphorylated during mitosis. The mitotically phosphorylated MEK1, upon partial proteolysis with trypsin, generates a different peptide population compared with interphase MEK1. MEK1 cleaved with the lethal factor of the anthrax toxin can still be activated by its upstream mitotic kinases, and this form is fully active in the Golgi fragmentation process. We believe that the mitotic phosphorylation induces a change in the conformation of MEK1 and that this form of MEK1 recognizes Golgi membranes as a target compartment. Immunoelectron microscopy analysis reveals that treatment of permeabilized normal rat kidney (NRK) cells with mitotic extracts, treated with or without lethal factor, converts stacks of pericentriolar Golgi membranes into smaller fragments composed predominantly of tubuloreticular elements. These fragments are similar in distribution, morphology, and size to the fragments observed in the prometaphase/metaphase stage of the cell cycle in vivo.  相似文献   

18.
To investigate the role of the intracellular C-terminal tail of the rat metabotropic glutamate receptor 1a (mGlu1a) in receptor regulation, we constructed three C-terminal tail deletion mutants (Arg847stop, DM-I; Arg868stop, DM-II; Val893stop, DM-III). Quantification of glutamate-induced internalization provided by ELISA indicated that DM-III, like the wild-type mGlu1a, underwent rapid internalization whilst internalization of DM-I and DM-II was impaired. The selective inhibitor of protein kinase C (PKC), GF109203X, which significantly reduced glutamate-induced mGlu1a internalization, had no effect on the internalization of DM-I, DM-II, or DM-III. In addition activation by carbachol of endogenously expressed M1 muscarinic acetylcholine receptors, which induces PKC- and Ca2+-calmodulin-dependent protein kinase II-dependent internalization of mGlu1a, produced negligible internalization of the deletion mutants. Co-expression of a dominant negative mutant form of G protein-coupled receptor kinase 2 (DNM-GRK2; Lys220Arg) significantly attenuated glutamate-induced internalization of mGlu1a and DM-III, whilst internalization of DM-I and DM-II was not significantly affected. The glutamate-induced internalization of mGlu1a and DM-III, but not of DM-I or DM-II, was inhibited by expression of DNM-arrestin [arrestin-2(319-418)]. In addition glutamate-induced rapid translocation of arrestin-2-Green Fluorescent Protein (arr-2-GFP) from cytosol to membrane was only observed in cells expressing mGlu1a or DM-III. Functionally, in cells expressing mGlu1a, glutamate-stimulated inositol phosphate accumulation was increased in the presence of PKC inhibition, but so too was that in cells expressing DM-II and DM-III. Together these results indicate that different PKC mechanisms regulate the desensitization and internalization of mGlu1a. Furthermore, PKC regulation of mGlu1a internalization requires the distal C terminus of the receptor (Ser894-Leu1199), whilst in contrast glutamate-stimulated GRK- and arrestin-dependent regulation of this receptor depends on a region of 25 amino acids (Ser869-Val893) in the proximal C-terminal tail.  相似文献   

19.
The N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate receptor, which plays crucial roles in synaptic plasticity and development. We have recently shown that potentiation of NMDA receptor function by protein kinase C (PKC) appears to be mediated via activation of non-receptor tyrosine kinases. The aim of this study was to test whether this effect could be mediated by direct tyrosine phosphorylation of the NR2A or NR2B subunits of the receptor. Following treatment of rat hippocampal CA1 mini-slices with 500 nM phorbol 12-myristate 13-acetate (PMA) for 15 min, samples were homogenized, immunoprecipitated with anti-NR2A or NR2B antibodies and the resulting pellets subjected to Western blotting with antiphosphotyrosine antibody. An increase in tyrosine phosphorylation of both NR2A (76 +/- 11% above control) and NR2B (41 +/- 11%) was observed. This increase was blocked by pretreatment with the selective PKC inhibitor chelerythrine, with the tyrosine kinase inhibitor Lavendustin A or with the Src family tyrosine kinase inhibitor PP2. PMA treatment also produced an increase in the phosphorylation of serine 890 on the NR1 subunit, a known PKC site, at 5 min with phosphorylation returning to near basal levels by 10 min while tyrosine phosphorylation of NR2A and NR2B was sustained for up to 15 min. These results suggest that the modulation of NMDA receptor function seen with PKC activation may be the result of tyrosine phosphorylation of NR2A and/or NR2B.  相似文献   

20.
Stimulation of hippocampal 5-HT(1A) receptors impairs memory retention. The highly selective 5-HT(1A) antagonist, WAY-100635, prevents the cognitive deficits induced not only by 5-HT(1A) stimulation but also by cholinergic or NMDA receptor blockade. On this basis, the effects of WAY-100635 on molecular events associated with memory storage were explored. In rat hippocampus, WAY-100635 produced a rapid increase in phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and in Ca(2+)-independent CaMKII and protein kinase A (PKA) enzyme activity. This increase was followed a few hours later by an enhanced membrane expression of AMPA receptor subunits, especially of the GluR1 subunit phosphorylated at the CaMKII site, pGluR1(Ser831). The same qualitative effects were found with the weaker 5-HT(1A) antagonist NAN-190. The effects of both antagonists were no longer apparent in rats with a previous 5-HT depletion induced by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA), suggesting that 5-HT(1A) receptor blockade removes the tonic inhibition of 5-HT through 5-HT(1A) receptor stimulation on excitatory hippocampal neurons, with the consequent increase in PKA activity. In addition, administration of WAY-100635 potentiated the learning-specific increase in the hippocampus of phospho-CaMKII, Ca(2+)-independent CaMKII activity, as well as the phosphorylation of either the CaMKII or the PKA site on the AMPA receptor GluR1 subunit. This study suggests that blockade of hippocampal 5-HT(1A) receptors favours molecular events critically involved in memory formation, and provides an in vivo molecular basis for the proposed utility of 5-HT(1A) receptor antagonists in the treatment of cognitive disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号